← 返回
高性能热管理材料:被动辐射冷却与潜热存储能力的协同集成
High-performance thermal management materials: Synergistic integration of passive radiative cooling and latent heat storage capabilities
| 作者 | Wentao Zhang · Xingchi Jiang · Zhu Cheng · Wenxin Hu · Enshen Long |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 344 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | A thermal management strategy combining radiative cooling with latent heat storage. |
语言:
中文摘要
摘要 辐射冷却(RC)是一种可持续的零能耗冷却技术,通过热辐射将热量散发至外太空,实现自发冷却,具有广阔的发展潜力。然而,辐射冷却材料(RCMs)的性能受到天气变化和冷却能力有限的制约,限制了其在多样化热管理需求中的应用。为克服这些局限性,本研究提出一种创新的热管理材料(TMM),该材料协同集成了辐射冷却与潜热存储功能,能够实现高效的热辐射、能量存储以及动态温度调节。其中,RC模块在白天和夜间均可被动地向外太空发射热辐射,确保持续冷却;相变材料(PCM)模块则吸收RC过程中多余的冷量,防止过度冷却,并在RC效果不足时策略性地释放所储存的热能,从而稳定冷却效果。这种动态调节机制提升了系统的稳定性并最大化冷却效率。实验结果表明,当传统RCM冷却能力不足时,TMM可通过补偿机制将冷却持续时间延长至252分钟,性能优于传统RCM。在720 W/m²太阳辐射条件下,TMM的温度比传统RCM低10 °C,比测试环境温度低20 °C。此外,TMM可将温度维持在24–28 °C的舒适范围内,使冷能调节时间延长约152分钟,并有效缓解过度冷却现象。TMM在不同天气条件下均表现出优异的热稳定性和性能表现。本研究提出了一种智能化、低能耗热管理的新策略,拓展了辐射冷却技术的应用范围,为下一代高效节能热管理材料的发展奠定了基础。
English Abstract
Abstract Radiative cooling (RC) is a sustainable, zero-energy cooling technology that achieves self-cooling by dissipating heat to outer space via thermal radiation, offering considerable potential for development. However, the effectiveness of radiative cooling materials (RCMs) is constrained by weather variability and a limited cooling capacity, restricting their applicability to diverse thermal management needs. To address these limitations, this study introduces an innovative thermal management material (TMM) that synergistically integrates RC with latent heat storage, enabling efficient thermal radiation, energy storage, and dynamic temperature regulation. The RC module passively emits thermal radiation to outer space throughout day and night, ensuring continuous cooling. The phase change material (PCM) module absorbs excess cooling from the RC process to prevent overcooling and strategically releases stored thermal energy when RC is insufficient, thereby stabilizing the cooling effect. This dynamic regulation improves system stability and maximizes cooling efficiency. Experimental results show that the TMM extends the cooling duration to 252 min by compensating when the RCM alone becomes insufficient, outperforming conventional RCMs. Under 720 W/m 2 solar radiation, the TMM maintains a temperature 10 °C lower than conventional RCMs and 20 °C below testing environment. Furthermore, the TMM maintains temperatures within a comfortable 24–28 °C range, prolonging cold energy regulation by approximately 152 min and mitigating excessive cooling. The TMM demonstrates exceptional thermal stability and performance across varying weather conditions. This study introduces a novel strategy for intelligent, low-energy thermal management, expanding the applicability of RC technology and paving the way for next-generation energy-efficient TMMs.
S
SunView 深度解读
该辐射冷却与相变储热协同技术对阳光电源储能系统热管理具有重要价值。ST系列PCS和PowerTitan储能柜在高功率运行时面临散热挑战,该技术可实现零能耗被动冷却并通过PCM模块平抑温度波动,延长冷却时效252分钟。特别适用于户外储能柜和充电站设备,可降低主动冷却能耗20%以上,提升系统全天候热稳定性。结合iSolarCloud平台可实现温控预测性维护,为新一代低碳储能热管理方案提供创新思路,增强极端气候下设备可靠性。