← 返回
基于数据驱动的电池储能系统建模
Data-Driven Modeling of Battery-Based Energy Storage Systems
| 作者 | Edgar D. Silva-Vera · Jesus E. Valdez-Resendiz · Julio C. Rosas-Caro · Gerardo Escobar · D. Guillen · J. M. Sosa Zuñiga |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2025年2月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 数据驱动建模 电池电力系统 参数识别 状态空间表示 自适应控制策略 |
语言:
中文摘要
本文提出一种针对包含功率变换器与电机的电池基电力系统的数据驱动建模方法。该方法无需各部件的先验理论模型,即可捕捉系统整体动态特性,并实现参数辨识。特别地,将电池视为包含电力电子变换器和直流电机的综合系统的供电单元,重点考虑了电池开路电压曲线的估计。所建立的状态空间模型能有效描述电机转速、变换器及电池输出电压等关键变量,既可构建高阶模型以表征快变动态,也支持降阶模型的参数识别以描述慢变过程,为自适应控制策略的设计与实施提供了有效工具。
English Abstract
This article presents a data-driven modeling methodology applied to a battery-based power system comprising a power converter and an electric machine. The proposed method captures the dynamics describing the complete system and allows the identification of its parameters without the need for any explicit theoretical model of the components. In particular, the proposed approach considers the battery as the supplying element of a broader system comprising power electronics converters and direct-current motors, paying special attention to the battery open-circuit voltage curve estimation. This approach successfully yields a state-space representation that optimally describes the more essential variables, such as motor speed and output voltages of the converter and battery. Consequently, the proposed approach allows the generation of higher-order models representing transient and rapid dynamics and facilitates the identification of parameters that define reduced-order models describing slower dynamics. This streamlines the implementation of adaptive control strategies, providing an effective tool for their development and execution.
S
SunView 深度解读
该数据驱动建模技术对阳光电源ST系列储能变流器和PowerTitan储能系统具有重要应用价值。文章提出的无需先验模型的参数辨识方法,可直接应用于储能PCS与电池系统的联合建模,通过实测数据快速构建状态空间模型,准确估计电池SOC曲线和变换器动态特性。该方法支持高阶模型捕捉快变暂态和降阶模型描述慢变过程,可显著提升iSolarCloud平台的智能诊断能力,为储能系统的自适应控制策略优化提供数据基础。同时,该技术也可延伸至新能源汽车OBC和充电桩产品线,实现电池-变换器-负载系统的整体建模与预测性维护,增强产品全生命周期管理能力。