← 返回
储能系统技术 储能系统 ★ 5.0

利用浮力实现可扩展和可持续的能量存储

Harnessing buoyancy for scalable and sustainable energy storage

作者 Yongyi Huang · Junchao Cheng · Xunyu Liang · Minliang Tengd · Akie Uehara · Fengjun Chena · Yicheng Zhoua · Tomonobu Senjyu
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A scalable Buoyancy Energy Storage (ByES) system is proposed for liquid and gaseous environments.
语言:

中文摘要

摘要 随着全球向可再生能源的转型不断加速,可扩展且可持续的能量存储技术正变得日益重要。本研究提出了一种浮力储能系统(Buoyancy Energy Storage System),这是一种通过将浮体浸入流体中以储存多余能量,并通过控制其上升过程将重力势能转化为电能的新型方法。基于能量守恒原理和理想气体定律,本文推导了在液体和气体环境中,变体积与定体积浮体的能量储存的解析关系式。在液体中,柔性浮体的能量容量与内部气体量呈正相关,与下潜深度呈负相关;而刚性浮体储存的能量则与体积和深度成正比。在空气中,变体积浮体的能量储存对高度和压力呈非线性依赖,而定体积系统则受环境空气密度和内部体积的影响。这些公式为该技术的设计与规模化提供了清晰的物理基础。初步经济分析表明,在约1000米深度部署时,储能的平准化成本(Levelized Cost of Storage)估计为每千瓦时1088至2908美元。这些数值具有指示意义,反映了早期阶段的假设,并采用保守估算以涵盖材料、海洋部署及长期维护方面的不确定性。尽管短期内成本竞争力有限,浮力储能仍具备长期潜力,作为一种模块化、环境适应性强且超大规模的能量存储解决方案,适用于将大规模可再生能源整合进未来电网。值得注意的是,该系统在概念上被评估用于捕获和储存与台风等极端天气事件相关的巨大动能和热能,展示了其在沿海和岛屿地区作为弹性能源缓冲装置的潜力。此外,基于柔性体在不同深度下的独特行为,本研究提出了一种涉及刚性–柔性混合浮体构型的新研究方向。初步分析表明,柔性浮体在某些深度可能发生部分塌陷,在下潜过程中做负功,从而提高净能量储存量。这带来了关于下潜深度以及刚性与可变形组件之间体积比的关键优化问题,值得更广泛的研究社区进一步探索。

English Abstract

Abstract As the global shift to renewable energy accelerates, scalable and sustainable energy storage technologies are becoming increasingly essential. This study presents the Buoyancy Energy Storage System, a novel method that stores surplus energy by submerging buoyant objects in fluids and recovers it via controlled ascent, converting gravitational potential energy into electricity. Based on energy conservation principles and the ideal gas law, analytical relationships for energy storage in both variable-volume and fixed-volume buoyant bodies in liquid and gaseous environments are derived. In liquids, soft floaters exhibit energy capacity positively correlated with internal gas quantity and negatively correlated with descent depth, while rigid floaters store energy in direct proportion to volume and depth. In air, variable-volume floaters display nonlinear dependence on altitude and pressure, whereas fixed-volume systems are influenced by ambient air density and internal volume. These formulations offer a clear physical foundation for designing and scaling this technology. Preliminary economic analysis estimates the Levelized Cost of Storage at $1088–$2908/kWh when deployed at a depth of around 1000 m. These values are indicative and reflect early-stage assumptions, with intentionally conservative estimates to account for uncertainties in materials, marine deployment, and long-term maintenance. Despite limited short-term cost competitiveness, Buoyancy Energy Storage offers long-term potential as a modular, environmentally adaptive, and ultra-large-scale energy storage solution suitable for integrating massive-scale renewable energy into future grids. Notably, the system is conceptually evaluated for its feasibility in capturing and storing the vast kinetic and thermal energy associated with extreme weather events such as typhoons, demonstrating its potential as a resilient energy buffer in coastal and island regions. In addition, based on the distinct behavior of soft bodies at varying depths, this study proposes a novel research direction involving hybrid rigid–soft floater configurations. Preliminary analysis suggests that soft floaters may partially collapse at certain depths, performing negative work during descent and thereby enhancing net energy storage. This presents key optimization challenges regarding submersion depth and the volume ratio between rigid and deformable components, worthy of further investigation by the broader research community.
S

SunView 深度解读

该浮力储能系统作为新型物理储能技术,对阳光电源PowerTitan等大规模储能解决方案具有战略参考价值。其模块化设计理念与我司ST系列PCS的分布式架构高度契合,可探索混合储能系统集成。系统的能量管理算法可借鉴至iSolarCloud平台,优化海上风电场景的储能调度策略。虽然当前成本较高(1088-2908美元/kWh),但其超大规模、长周期储能特性为沿海地区可再生能源消纳提供新思路,可与我司GFM控制技术结合,增强电网韧性和极端天气应对能力。