← 返回
储能系统技术 储能系统 风光储 ★ 5.0

考虑源荷多尺度预测的风光储氢系统优化运行

Optimal operation of wind-solar-storage-hydrogen system considering multi-scale forecasting of source-load

作者 Yu Zhang · Chenxi Xu · Yuan Zhou · Jiangjiang Wang
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 344 卷
技术分类 储能系统技术
技术标签 储能系统 风光储
相关度评分 ★★★★★ 5.0 / 5.0
关键词 A wind-solar-storage-hydrogen is constructed for flexible energy integration.
语言:

中文摘要

摘要 可再生能源出力的随机性以及多种负荷需求的不确定性显著增加了综合能源系统优化调度的复杂性,使得传统优化方法难以满足实际运行需求。为应对这一挑战,本文提出了一种基于源荷多尺度预测的风光储氢系统优化运行方法。通过相关性和周期性分析构建多尺度预测模型,并引入TimeGAN进行数据增强以提升预测精度。随后,利用日前预测数据制定更具前瞻性的日前运行计划,并结合更新后的预测结果进行小时级日内调整,以减少设备的功率偏差。典型日的仿真结果表明,与传统方法相比,所提策略可使系统运行成本降低16.22%,且三个典型日的可再生能源利用率分别提升至80.63%、91.54%和95.83%,显著提升了系统的经济性与可再生能源消纳能力。

English Abstract

Abstract The randomness of renewable energy output and the uncertainty of multiple load demands significantly increase the complexity of optimization and scheduling in integrated energy systems, rendering traditional optimization methods inadequate for practical operational needs. To address this challenge, this paper proposes an optimal operation method for a wind–solar–storage–hydrogen system based on multi-scale forecasting of both energy sources and loads. The multi-scale forecasting model is constructed based on correlation and periodicity analyses, and TimeGAN is introduced for data augmentation to enhance forecast accuracy. Then, a more forward-looking day-ahead operation plan is formulated using day-ahead forecasting data, followed by hour-level intra-day adjustments based on updated forecasts to reduce power deviations of equipment. Simulation results on typical days show that the proposed strategy reduces operational costs by 16.22 % compared to traditional methods, while the utilization rates of renewable energy sources on the three typical daysare improved to 80.63 %, 91.54 %, and 95.83 %, respectively, significantly enhancing both the economic performance and renewable energy accommodation of the system.
S

SunView 深度解读

该多尺度源荷预测优化技术对阳光电源风光储氢一体化解决方案具有重要价值。通过TimeGAN数据增强提升预测精度,可显著优化ST系列储能变流器和PowerTitan系统的日前-日内分层调度策略,降低功率偏差16.22%。结合iSolarCloud平台的预测性维护能力,可将新能源消纳率提升至95%以上,增强SG系列光伏逆变器与储能系统的协同控制效果,为构建经济高效的多能互补微网提供技术支撑,特别适用于工商业储能和综合能源站场景。