← 返回
储能系统技术 储能系统 有限元仿真 ★ 4.0

高转矩密度低温升电动摩托车用轴向磁通永磁电机设计

Design of Axial-Flux Permanent Magnet Motors With High Torque Density and Low Thermal Raise for Electric Motorcycle

作者 You Zhou · Junyao Liu · Zhi Chen · Guanghui Yang · Yaojie He · An Li
期刊 IEEE Transactions on Industrial Electronics
出版日期 2024年6月
技术分类 储能系统技术
技术标签 储能系统 有限元仿真
相关度评分 ★★★★ 4.0 / 5.0
关键词 轴向磁通永磁同步电机 Halbach永磁阵列 热管理 转矩密度 效率提升
语言:

中文摘要

轴向磁通永磁同步电机(AFPMSM)具有结构紧凑、转矩密度高的优势,适用于电动自行车直驱系统。然而,其复杂的三维磁路与散热难题制约了效率提升。本文提出一种采用Halbach永磁阵列的轴向磁通电机(H-AFPMSM),利用自屏蔽磁化特性,在保持高转矩密度的同时显著降低损耗与温升。通过有限元分析与5kW满载样机实验表明,相较于传统径向磁通电机,H-AFPMSM转矩密度提升30%;相比表面式永磁电机,绕组温升降低40°C,且全速域效率提高5%∼10%。

English Abstract

Axial-flux permanent magnet synchronous motor (AFPMSM) is a compact and high-torque solution for direct-drive e-bikes. However, its complex 3-D flux path and thermal management challenges hinder its efficiency. To address these issues, an AFPMSM with Halbach PM array (H-AFPMSM) is proposed. Leveraging self-shielding magnetization, the H-AFPMSM demonstrates higher magnetic loading and significantly reduces heat dissipation while maintaining torque density. The performance of the AFPMSM is first analyzed to guide topology selection and a rapid three-stage optimization method is proposed thereby. Comparative analysis with surface-mounted PM AFPMSM (S-AFPMSM) and radial-flux PMSM (RFPMSM) via finite element analysis and 5-kW full-loading prototype testing shows a 30% increase in torque density for H-AFPMSM compared to RFPMSM and a 40°C decrease in coil temperatures compared to S-AFPMSM due to 25% loss reduction. Moreover, the proposed H-AFPMSM exhibits a 5%∼10% improvement in efficiency across the entire operating speed range compared to S-AFPMSM. Via rapid simulation and performance enhancement techniques, the H-AFPMSM is developed as an ideal fit for e-bike scenario.
S

SunView 深度解读

该Halbach阵列轴向磁通电机技术对阳光电源新能源汽车驱动系统具有重要借鉴价值。其30%转矩密度提升和40°C温升降低特性,可直接应用于充电桩散热受限场景下的风冷电机设计。自屏蔽磁化特性减少的涡流损耗,与阳光电源SiC功率器件低损耗理念契合,可优化车载OBC和电机驱动系统的功率密度。三维磁路有限元分析方法可迁移至ST储能系统的磁性元件设计,提升变压器和电抗器的热管理能力。5-10%全速域效率提升对应阳光电源PowerTitan储能系统的全工况高效运行需求,该热设计方法可为大型储能变流器的紧凑化布局提供技术支撑。