← 返回
采用梯形电流模式的固定开关频率控制实现三电平DC-DC变换器的零电压切换
Fixed Switching Frequency Control Using Trapezoidal Current Mode to Achieve ZVS in Three-Level DC–DC Converters
| 作者 | Zhigang Yao · Xinyu He · Muyang Liu · Jingrui Liu · Ziheng Xiao · Yi Tang |
| 期刊 | IEEE Transactions on Industrial Electronics |
| 出版日期 | 2024年9月 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 DC-DC变换器 三电平 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 固定开关频率控制 梯形电流模式 零电压开关 三电平直流-直流转换器 效率提升 |
语言:
中文摘要
通常,变开关频率方法用于使功率变换器工作在三角电流模式(TCM)或近临界导电模式(CRM),以实现零电压切换(ZVS)。然而,该方法存在电感峰值电流高、控制器设计复杂等问题。本文提出一种新颖的固定开关频率控制策略,采用梯形电流模式(TZCM),在近CRM下通过建模平均电感电流与双占空比的关系,调节并交替两个占空比,实现ZVS。该方法有效降低峰值电流,提升轻载效率,并适用于所有三电平DC-DC变换器。实验在2 kW样机上验证,最高效率达99.12%。
English Abstract
Generally, the variable switching frequency method is used to operate power converters in triangular current mode (TCM) or near critical conduction mode (CRM) to achieve zero-voltage switching (ZVS). However, this approach faces significant challenges: high peak inductor current, and complex controller design due to varied digital delays in variable frequency operation. To address these challenges, this article proposes a novel fixed switching frequency control method using trapezoidal current mode (TZCM) to mitigate the inductor peak current while realizing ZVS for three-level dc–dc converters. A relationship between the average inductor current and the two duty cycles is modeled to determine the appropriate trapezoidal current shape in near-CRM. By simultaneously adjusting two duty cycles and alternating them within each switching period, ZVS is successfully achieved at a fixed switching frequency. Compared with traditional methods, the proposed method not only improves the converter efficiency, especially at light loads, but also pioneers a fixed frequency scheme for achieving ZVS applicable to all three-level dc–dc converters. The proposed control is experimentally validated on a 2 kW prototype, achieving an efficiency of 99.12%.
S
SunView 深度解读
该固定频率ZVS控制技术对阳光电源ST系列储能变流器和SG光伏逆变器的DC-DC环节具有直接应用价值。三电平拓扑是阳光电源中高压产品的核心架构,该技术通过梯形电流模式在固定频率下实现ZVS,可有效解决变频控制带来的EMI设计复杂性和磁性元件优化难题。相比传统TCM,峰值电流降低可减小功率器件应力,提升SiC模块寿命,99.12%的效率表现契合PowerTitan大型储能系统的高效需求。双占空比调节策略可集成到现有DSP控制平台,为1500V高压系统和车载OBC的轻载效率优化提供新思路,特别适用于储能系统宽功率范围运行工况。