← 返回
储能系统技术 储能系统 ★ 4.0

Allam循环的㶲分析:评估回热器性能对循环效率的影响

Exergy analysis of the Allam cycle: Assessing the impact of regenerator performance on the cycle efficiency

作者 Gnandjuet Gaston Brice Dagoa · Guido Francesco Frate · Andrea Baccioli · Lorenzo Ferrari · Emanuela Alfarano · Alessandro Colnago
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 345 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 A 3-stage compression/pumping Allam cycle layout with a bypass flow reheat is proposed.
语言:

中文摘要

摘要 碳捕集技术是实现电力生产脱碳的关键步骤。目前最常见的技术方案集中在从电厂尾气中分离CO₂,但这显著增加了电厂的占地面积和系统复杂性,并降低了净输出功率。新型动力循环的开发提供了一种颇具前景的替代方案,可实现更便捷的CO₂分离。Allam循环是这类新型循环中技术最为先进且接近实际部署的代表之一。该循环是一种半封闭式、直接燃烧的富氧燃烧循环,能够在超临界状态下直接从循环工质中分离出CO₂,相较于传统的燃烧后CO₂去除技术具有显著优势。Allam循环被视为一种高度回热、跨临界运行的布雷顿循环。因此,本文旨在通过模拟Allam循环,重点分析其在不同最高循环温度下性能对回热器特性的依赖关系。所提出的Allam循环构型包含三阶段泵送/压缩过程以及旁路流体再热设计,额定输出功率可达300 MW。结果表明,所需的回热器最大传热系数UA值范围为30,000至43,000 kW/K;当最高循环温度从最高值降低至最低分析值时,净发电效率约下降5个百分点。本文还开展了㶲分析,以考察各部件的性能及其对系统整体㶲损失的影响,从而在部件层面上识别出循环中热力学不可逆性的主要来源。

English Abstract

Abstract Carbon capture technologies represent a crucial step towards the decarbonization of power production. The most common alternatives focus on separating the CO 2 from the power plant’s exhaust, which markedly increases the power plant’s footprint and complexity and reduces the net power output. Innovative power cycle development is a promising alternative, allowing for a much easier CO 2 separation. The Allam cycle represents one of the most advanced and close to deployment of these cycles. It is a semi-closed loop, direct-fired with an oxyfuel combustion cycle, which allows for the CO 2 direct separation from the cycle fluid in the supercritical state – a considerable advantage compared to post-combustion CO 2 removal technologies. The Allam cycle is considered a highly recuperated and trans -critical Brayton cycle. For this reason, the purpose of this paper is to simulate the Allam cycle by highlighting its performance’s dependence on the regenerator at different maximum cycle temperatures. The proposed Allam cycle layout includes a three pumping/compression stages phase and a bypass flow reheating and it is designed to produce up to 300 MW. Results demonstrate that a maximum recuperator UA from 30,000 to 43000 kW/K is required, and reducing the maximum cycle temperature from the highest to the lowest analyzed values leads to a decrease in the net electric efficiency of around 5 percentage points. An exergy analysis is conducted to examine the performance of each component and its impact on the overall system in terms of losses, helping to pinpoint the cycle’s sources of thermodynamic inefficiencies at the component level.
S

SunView 深度解读

该Allam循环的火用分析对阳光电源储能系统热管理优化具有借鉴意义。研究中回热器性能对系统效率的影响分析,可应用于ST系列PCS和PowerTitan储能系统的热量回收设计。论文强调的部件级热力学损失识别方法,有助于优化储能变流器的功率器件散热方案和三电平拓扑效率。通过火用分析定位系统低效环节的思路,可指导iSolarCloud平台开发预测性维护算法,提升储能电站全生命周期能效管理水平。