← 返回
基于补偿锁相环动态的阻抗重塑方法以提升弱电网下电压源换流器的有功功率传输能力
Impedance Reshaping Method Based on Compensating PLL Dynamic to Improve Active Power Transfer Capability of VSC Under Weak Grid
| 作者 | Xiaoling Xiong · Bochen Luo |
| 期刊 | IEEE Transactions on Power Electronics |
| 出版日期 | 2024年9月 |
| 技术分类 | 电动汽车驱动 |
| 技术标签 | 弱电网并网 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 电压源换流器 静态功率限制 动态功率限制 功率参考优化设计 阻抗重塑方法 |
语言:
中文摘要
基于锁相环(PLL)的矢量电流控制方案在并网电压源变流器(VSC)中得到了广泛应用。然而,VSC的功率传输能力首先会受到动态功率限制(DPL)的约束,然后受到静态功率限制(SPL)的约束。SPL由系统的稳态运行情况决定,如稳态代数方程。同时,DPL主要取决于控制策略和控制器参数,它也被称为小信号稳定边界,且不会超过SPL。本文研究了具有不同外环控制回路(即有功功率和无功功率(PQ)外环控制回路,或有功功率和交流电压(PV)外环控制回路)的VSC的SPL和DPL。研究发现,向电网注入额外的无功功率有利于提高VSC的SPL和DPL,尤其是在弱电网条件下。为了在VSC的功率约束范围内使SPL最大化,本文提出了功率参考值的优化设计方法。同时,对采用PQ或PV控制回路的VSC的SPL进行了对比分析,并明确了两种控制策略的应用场景。此外,针对限制DPL的主要因素,即PLL的影响,提出了一种基于补偿PLL动态特性的阻抗重塑方法来提高VSC的DPL,使得VSC的DPL几乎扩展到SPL。最后,还进行了仿真和实验测试,结果验证了所提方法的有效性。
English Abstract
The vector current control scheme based on the phase-locked loop (PLL) is widely used in grid-connected voltage-source converters (VSCs). However, the power transfer capability of the VSC will first be limited by dynamic power limitation (DPL) and then by static power limitation (SPL). The SPL is determined by the steady-state operation of the system, such as steady-state algebraic equations. Simultaneously, the DPL mainly relies on control strategy and controller parameters, which is also called the small-signal stability boundary and will not exceed SPL. In this article, the SPL and DPL of the VSC with different outer control loops are investigated, i.e., active power and reactive power (PQ) outer control loops, or active power and ac voltage (PV) outer control loops. It is found that extra reactive power injected into the grid is beneficial for improving the SPL and DPL of the VSC, especially under weak grid conditions. To maximize the SPL within the power constraint of VSC, the optimal design method for power references is presented. Meanwhile, a comparative analysis for the SPL of VSC with PQ or PV control loops is given, and the application scenario of both control strategies is clarified. Furthermore, aiming at the main factor restricting the DPL, i.e., PLL influence, an impedance reshaping method based on compensating PLL dynamics is proposed to increase the DPL of VSC, resulting in the DPL of the VSC almost extended to SPL. Finally, simulation and experimental tests are also carried out, and the results validate the effectiveness of the proposed methods.
S
SunView 深度解读
从阳光电源的业务视角来看,这项基于补偿锁相环动态的阻抗重塑技术对提升弱电网下的并网性能具有重要战略价值。随着全球光伏和储能系统向电网薄弱地区渗透,系统功率传输能力受限已成为制约业务拓展的关键瓶颈。
该研究深入剖析了电压源型变流器(VSC)的静态功率极限(SPL)和动态功率极限(DPL)机理,这与阳光电源的光伏逆变器和储能变流器产品直接相关。论文指出向电网注入适量无功功率可显著提升弱电网下的功率传输能力,这为我们优化PQ控制和PV控制策略提供了理论依据。特别是在分布式光伏和偏远地区储能项目中,合理的无功配置可在不增加硬件成本的前提下提升系统容量利用率15-30%。
技术的核心创新在于通过补偿锁相环动态特性来重塑系统阻抗,使DPL接近SPL理论上限。这对阳光电源当前面临的挑战极具针对性:在短路比SCR<3的弱电网场景下,传统控制策略往往因小信号稳定性问题而被迫降额运行。该方法可有效拓宽稳定运行边界,提升设备在恶劣电网条件下的适应性。
从应用成熟度看,该技术基于成熟的矢量控制架构,主要涉及控制算法优化,硬件改动minimal,具备快速产品化的条件。建议优先在1500V大功率组串逆变器和大型储能PCS产品线验证。主要挑战在于多机并联场景下的交互影响评估,以及极端电网扰动下的鲁棒性验证。若成功应用,将显著增强阳光电源在新能源高比例接入、微电网等新兴市场的竞争力,对冲弱电网项目的技术风险。