← 返回

基于虚拟电压补偿的电压控制型VSG不对称低电压穿越PBC控制策略

Asymmetrical Low-Voltage Ride-Through Control Strategy Based-on PBC With Virtual Voltage Compensation for Voltage-Controlled VSG

作者
期刊 IEEE Transactions on Industrial Electronics
出版日期 2025年1月
技术分类 电动汽车驱动
技术标签 构网型GFM 跟网型GFL 虚拟同步机VSG 弱电网并网
相关度评分 ★★★★★ 5.0 / 5.0
关键词 电网形成逆变器 不对称低电压穿越 虚拟同步发电机 负序电流控制 无源控制策略
语言:

中文摘要

构网型(GFM)逆变器在弱电网中具有电压和频率支撑的优势。然而,与跟网型逆变器不同,GFM 逆变器在不对称电压骤降期间面临更具挑战性的情况。电压控制型虚拟同步发电机(VVSG)是 GFM 逆变器的典型控制方法。然而,需要仔细考虑大涌流、响应速度慢以及负序电流控制等问题。在现有的低电压穿越(LVRT)控制策略中,在维持电网支撑能力的同时,无法妥善应对这些问题。在这种情况下,可能会出现系统不稳定和电能质量恶化的情况。为克服这些局限性,本文提出一种不对称 LVRT 控制策略。首先,建立正序和负序模型并计算不对称瞬时电流。在此基础上,分析 VVSG 控制方法对瞬时负序电流的影响,揭示负序虚拟电压幅值、电网相角和响应速度的作用。然后,进一步改进基于 VVSG 控制方法的双闭环控制。在外环中对负序虚拟电压进行补偿,以实现对负序电流和涌流的控制。将一种新型的基于无源性的控制(PBC)策略拓展到内环,该策略具有快速的暂态响应和较强的鲁棒性。此外,通过暂态功角稳定性分析,证明了暂态裕度得到改善。最后,仿真和实验结果验证了所提方法的有效性。

English Abstract

Grid-forming (GFM) inverters have the advantages of voltage and frequency support in weak grid. However, unlike grid-following inverters, GFM inverters present a more challenging picture during asymmetrical voltage sag. The voltage-controlled virtual synchronous generator (VVSG) is the typical control method of GFM inverter. However, the problem of large inrush, slow response speed, and negative-sequence current control need to be carefully considered. In the existing low-voltage ride-through (LVRT) control strategies, these issues cannot be decently coped with while maintaining the ability to support the grid. In this situation, system instability and deterioration of power quality may occur. To overcome these limitations, an asymmetrical LVRT control strategy is proposed. First, the positive and negative-sequence models are established and the asymmetrical instantaneous currents are calculated. Based on this, the influences of the VVSG control method on the instantaneous negative-sequence currents are analyzed, which reveals the role of negative-sequence virtual voltage amplitude, grid phase angle, and response speed. Then, the double closed-loop control based on VVSG control method is further improved. The negative-sequence virtual voltage is compensated in the outer-loop to achieve control of negative-sequence current and inrush current. A novel passivity-based control (PBC) strategy is extended into innerloop which has fast transient response and strong robustness. Furthermore, through the transient power angle stability analysis, the improvement of the transient margin is proved. Finally, simulation and experimental results verify the effectiveness of the proposed method.
S

SunView 深度解读

从阳光电源的业务视角来看,这项基于无源性控制(PBC)和虚拟电压补偿的不对称低电压穿越技术具有重要的战略价值。随着高比例新能源接入电网,构网型(GFM)逆变器正成为弱电网支撑的核心技术,这与我们在大型光伏电站和储能系统中面临的实际挑战高度契合。

该技术针对电压控制型虚拟同步发电机(VVSG)在不对称电压跌落时的三大痛点——冲击电流大、响应速度慢、负序电流控制困难——提出了系统性解决方案。通过在外环引入负序虚拟电压补偿和内环采用新型PBC策略,实现了快速瞬态响应和强鲁棒性的统一。这对我们的1500V大功率逆变器和储能变流器产品线具有直接应用价值,特别是在西北、东北等电网薄弱地区的项目中,能够显著提升设备的电网支撑能力和故障穿越性能。

从技术成熟度评估,该方案已完成仿真和实验验证,具备工程化基础。其通过功角稳定性分析证明了暂态裕度的改善,这为产品认证和电网适应性测试提供了理论支撑。然而,实际应用中仍需关注几个关键问题:一是不同电网阻抗比条件下的参数自适应整定,二是与现有LVRT标准的兼容性验证,三是多机并联场景下的协调控制策略。

对阳光电源而言,这项技术的引入可增强我们在构网型储能系统和新一代智能逆变器领域的技术领先性,特别是在微电网、独立电网等高端应用场景中形成差异化竞争优势,同时为氢能电解制氢等新兴业务的电力电子装备提供技术储备。