← 返回
储能系统技术 储能系统 ★ 4.0

质子交换膜燃料电池中平行流场的改进设计与多目标优化

Improved design and multi-objective optimization of parallel flow field in proton exchange membrane fuel cell

作者 Tong Gaoa1 · Xinyue Dengb1 · Ying Huang · Lei Gongb · Yayu Pengc
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 345 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 A cathode flow field with inlet middle and outlet blocks is proposed.
语言:

中文摘要

流场设计对质子交换膜燃料电池的性能具有显著影响,尤其是在高电流密度条件下。为解决传统平行流场(PAFF)在传质能力和排水性能方面的局限性,本研究提出了一种改进的阴极流场设计,分别在进口端、中间区域和出口端引入阻块结构。数值模拟结果表明,采用进口阻块的改进型平行流场(PAIB)性能提升最为显著,其最大功率密度较PAFF提高了6.1%,缺氧区域占比降低了27.17%。此外,氧气分布、电流密度、含水量及温度分布的均匀性也得到显著改善。为进一步提升性能,采用基于人工神经网络的代理模型结合非支配遗传算法II(NSGA-II)对各通道内阻块高度进行多目标优化。与基准案例PAIB相比,优化后的设计(PAIB-II)使净功率密度进一步提高4.6%,氧缺乏区域比例从19.78%降至12.19%,氧气均匀性指数由0.8084提升至0.8338。最后,采用基于流体体积法(VOF)的两相流模型评估了流场的排水性能。结果表明,相较于PAFF,PAIB-II设计具有更短的排水时间、更低的流道内液态水体积分数以及更小的气体扩散层表面液态水覆盖面积,展现出更优越的水管理能力。

English Abstract

Abstract Flow field design has a significant impact on the performance of proton exchange membrane fuel cells, especially under high current density conditions. To address the limitations of traditional parallel flow field (PAFF) in mass transfer capacity and drainage performance, this study proposes an improved cathode flow field design by introducing blocks at inlet end, middle region and outlet end, respectively. Numerical simulations revealed that the improved design of the parallel flow field with inlet block (PAIB) had the most significant performance enhancement, with a 6.1 % increase in the maximum power density and a 27.17 % reduction in the percentage of anoxic region compared to the PAFF. Furthermore, the uniformity of oxygen, current density, water content and temperature distribution were also greatly improved. To further enhance performance, an artificial neural network surrogate model coupled with non-dominated genetic algorithm II(NSGA-II) was employed to optimize block heights in each channel. Compared with the base case PAIB, the optimized design (PAIB-II) further improves the net power density by 4.6 %, reduces the percentage of oxygen-deficient region from 19.78 % to 12.19 %, and increases the oxygen homogeneity index from 0.8084 to 0.8338. Finally, a two-phase flow model based on the Volume of Fluid (VOF) method was used to evaluate drainage performance. Compared with the PAFF, the PAIB-II design has a shorter drainage time, lower liquid water volume fraction in the flow channel and lower liquid water coverage on the surface of the gas diffusion layer, demonstrating its superior water management capability.
S

SunView 深度解读

该燃料电池流场优化技术对阳光电源氢能储能系统及电堆热管理具有重要借鉴价值。研究中采用的神经网络+NSGA-II多目标优化方法可应用于ST系列PCS的散热流道设计,提升功率密度6.1%的思路可迁移至SiC/GaN功率器件的热管理优化。VOF两相流仿真技术对户外储能柜PowerTitan的防凝露与液冷系统设计有指导意义。流场均匀性优化理念可用于充电桩大功率模块的冷却通道改进,降低温度梯度,提升系统可靠性与能量转换效率。