← 返回
电动汽车驱动 ★ 4.0

基于仿生学的热电发电装置设计、仿真与实验

Design, simulation and experiment of thermoelectric power generation device based on bionics

作者 Peiyong Niac · Yunlong Zhang · Xiangli Wangb · Xuewen Zhang · Xiang Lia · Jie Zhang
期刊 Energy Conversion and Management
出版日期 2025年1月
卷/期 第 345 卷
技术分类 电动汽车驱动
相关度评分 ★★★★ 4.0 / 5.0
关键词 Bionic leaf-shaped fins were designed for TEG devices.
语言:

中文摘要

摘要 受仿生学启发,依据仿生学原理设计了六种具有叶形翅片的平板集热器,其翅片呈对称、交错和交替排列,并设计了三种分别带有2、4和6个翅片的平板冷却器,以增强热电发电机(TEG)中的废热回收效率。通过流动仿真确定了最优集热器结构,即采用长短交替椭圆翅片,实现了0.977的温度均匀性;同时确定了最优冷却器为具有4个翅片的结构,其速度均匀性达到0.852。最终的TEG装置将优化后的集热器夹置于两个优化后的冷却器之间,并在两侧各布置两列共二十个热电模块(TEMs),每列包含五个模块,呈对称分布。模拟研究了高温流体入口温度对不同TEM区域表面温度、热流密度、对流换热系数以及总传热系数的影响。同时分析了并流与逆流布置方式对传热特性的差异。结果表明,在恒定体积流量下,由于气体热物理性质的变化,传热参数并不随入口温度升高而单调增加。与并流相比,逆流布置显著增强了集热器内的对流换热系数以及热电模块的整体传热系数。在冷却水温度为290 K、改变高温空气入口温度条件下进行的电学测量显示,当入口温度为623 K时,串联连接模块的最大输出功率为7.6 W,而并联连接模块的最大输出功率为7.7 W,热电转换效率达到1.43%。研究表明,优化翅片结构与位置、热电模块布置方式以及热流体参数可有效强化传热过程,提升发电性能。

English Abstract

Abstract Inspired by bionics, six flat plate heat collectors with leaf-shaped fins in symmetrical, staggered and alternating arrangements, based on bionics principle, along with three flat plate coolers with 2, 4 and 6 fins, were designed to enhance waste heat recovery in thermoelectric generators (TEG). Flow simulations identifies an optimized heat collector with short-long alternating elliptical fins, achieving a temperature uniformity of 0.977 and a cooler with 4 fins, achieving a velocity uniformity of 0.852. The final TEG device integrated an optimized heat collector sandwiched between the two optimized coolers, with twenty thermoelectric modules (TEMs) symmetrically arranged in two columns per side and five modules per column. The effects of hot fluid inlet temperatures on surface temperatures, heat flux density, convective heat transfer coefficients and total heat transfer coefficients across different TEM regions were simulated. The influences of parallel and counter flow arrangements on heat transfer characteristics were also analyzed. Results show that the heat transfer parameters at a constant volumetric flow rate do not monotonically increase with intake temperature due to changes in gas thermophysical properties. Compared to parallel flow, counter-flow significantly enhances convective heat transfer coefficient within the heat collector and overall heat transfer coefficient of the TEM modules. Electrical measurements under varying hot air inlet temperatures, with cooling water at 290 K, show peak output powers of 7.6 W for series-connected modules and 7.7 W for parallel-connected modules at an inlet temperature of 623 K, achieving a thermoelectric conversion efficiency of 1.43 %. The study demonstrates that optimizing fin structure and position, TEM placement, and thermal fluid parameters enhance heat transfer and improve electrical output performance.
S

SunView 深度解读

该仿生热电发电技术对阳光电源电动汽车驱动系统及储能热管理具有重要参考价值。研究中优化的翅片式散热结构和流体布局可应用于功率器件热管理,特别是SiC/GaN模块的散热优化。逆流换热设计可提升ST系列PCS和电机驱动器的热传导效率,降低温升。仿生结构的温度均匀性(0.977)对提高功率模块可靠性有启发意义。热电转换技术可作为储能系统余热回收的辅助方案,提升系统综合能效。建议将仿生散热理念融入充电桩和车载OBC的热设计中。