← 返回
电动汽车驱动 ★ 4.0

振荡水柱装置在全尺寸波浪水槽中的数值模拟与几何研究及萨沃尼乌斯涡轮插入的影响

Numerical modeling and geometrical investigation of oscillating water column device into a full-scale wave flume and considering savonius turbine insertion

语言:

中文摘要

本文旨在建立一种计算方法,用于模拟连接至波浪水槽的全尺寸振荡水柱(OWC)装置,并考虑在呼出/吸入管道中安装萨沃尼乌斯涡轮的情况。该模型用于提出关于装置设计的建议,并分析其对性能指标的影响,例如涡轮功率和可用气动功率(P<sub>turbRMS</sub> 和 P<sub>pneuRMS</sub>)以及性能系数(C<sub>PRMS</sub>)。几何结构的研究采用构型定律(constructal design)进行指导。本研究考虑了湍流、不可压缩、多相(空气和水)流动,以模拟波浪水槽中波浪与OWC腔室之间的相互作用,以及冲击旋转式萨沃尼乌斯涡轮的振荡气流。数值求解基于有限体积法(FVM),并采用流体体积法(VOF)处理多相流问题;湍流模型选用经典的k–ω剪切应力输运(SST)模型。结果表明,在当前条件下,尽管涡轮的耦合并未显著影响装置内的波浪流动和水力气动效应,但P<sub>pneuRMS</sub>的幅值出现了阶梯式增长。例如,最优配置下含涡轮与不含涡轮情形的P<sub>pneuRMS</sub>分别为663.96 W和331.57 W。此外,最优配置下的P<sub>turbRMS</sub>达到179.24 W,其幅值比最差配置高出28倍,显示出设计优化在此类问题中的重要性。同时,涡轮耦合使C<sub>PRMS</sub>的最大综合幅值达到0.2727,与以往文献中关于开放通道内涡轮性能的推荐值一致。

English Abstract

Abstract The present work aims to develop a computational method for simulating a full-scale oscillating water column (OWC) device connected to a wave channel, which considers a Savonius turbine inserted in the exhalation/inhalation duct. This model is used to achieve recommendations about the device design and its influence on performance indicators such as turbine and available power ( P turbRMS and P pneuRMS ), and performance coefficient ( C PRMS ). The geometrical investigation is guided by the constructal design. It is considered a turbulent, incompressible, multiphase (air and water) flow simulating the wave flume, the interaction between the wave and the OWC chamber, and the oscillating airflow impinging on the rotational Savonius turbine. The solution is based on the finite volume method (FVM), and the volume of fluid (VOF) is used to treat the multiphase flow. The classical modeling with k – ω shear stress transport (SST) is adopted to model turbulence. Results demonstrated that the coupling with the turbine led to a comprehensive maximum magnitude of C PRMS = 0.2727, like previous literature recommendations for turbines in open channels. The wave flow and hydropneumatic effect on the device were not influenced by the turbine for the present conditions. Despite that, the magnitude of P pneuRMS had a step increase. For example, the optimal configuration resulted in P pneuRMS = 663.96 W and 331.57 W for cases with and without the turbine, respectively. Moreover, the optimal configuration resulted in P turbRMS = 179.24 W, a magnitude twenty-eight times superior to the worst configuration, showing the importance of design in this problem.
S

SunView 深度解读

该振荡水柱波浪能转换技术对阳光电源储能系统具有借鉴价值。研究中的构造设计法优化几何参数、多相流VOF建模、k-ω SST湍流控制等方法,可应用于ST系列PCS的热管理优化和PowerTitan储能系统的流体冷却设计。其功率系数优化思路(C_PRMS=0.2727)与我司MPPT算法、GFM/GFL控制策略的效率提升目标一致。旋转机械与流体耦合的数值仿真经验,可为电机驱动系统的风冷散热设计及充电桩功率器件热仿真提供方法论支持,助力提升系统可靠性与能量转换效率。