← 返回
多模式太阳能辅助液态二氧化碳储能系统的运行策略与经济性分析
Operational strategies and economic analysis of a multi-mode solar-assisted liquid CO2 energy storage system
| 作者 | Haowen Jiang · Zongyi Zhao · Jiangjiang Wang · Xutao Zhang |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A multi-mode solar LCES system is proposed. |
语言:
中文摘要
摘要 作为一种新型储能方式,液态二氧化碳储能(LCES)系统因其具备高能量密度潜力以及相比传统方法在选址上的更大灵活性而日益受到关注。然而,该系统在膨胀过程中的释能能力受限于压缩热的可获得性,仍存在较大的优化空间。本研究提出一种太阳能辅助的LCES系统,以解决传统系统在压缩热回收方面的局限性。热力学评估表明,引入太阳能显著提升了系统的热效率。本文进一步研究了该系统在全年太阳能辅助条件下的运行特性。结果表明,系统在春季发电性能最佳,发电量最高可达158,023 kWh。在全年运行过程中,系统主要以模式1运行,在太阳辐照较低时采用模式2,并在有富余太阳能时启用模式3以实现额外发电。经济性分析显示,由于增加了太阳能镜场及相关设备,集成系统的初始投资成本显著升高,达到468,911美元,远高于传统系统的51,939美元;其平准化度电成本(LCOE)也更高,分别为0.113美元/kWh和0.059美元/kWh。然而,太阳能辅助系统的投资回收期明显更短,为10.78年,而传统系统则需19.05年。此外,通过敏感性分析考察了太阳能镜场规模对系统成本效益的影响,凸显了合理系统设计在提升经济性方面的重要作用。
English Abstract
Abstract As a novel approach to energy storage, the liquid carbon dioxide energy storage (LCES) system is gaining increasing interest for its potential to deliver high energy density while offering greater flexibility in site selection compared to traditional methods. However, its energy release capability during the expansion process is limited by the availability of compression heat, leaving considerable room for optimization. This study proposes a solar-assisted LCES system to address the limitations of traditional systems related to compression heat recovery. Thermodynamic evaluation indicates that incorporating solar energy notably improves the system’s thermal efficiency. This study examines the system’s operational behavior across an entire year under solar-assisted conditions. Results show that the system achieves its highest power generation performance in spring, with electricity output reaching up to 158,023 kWh. Throughout the year, the system primarily operates in Mode 1, with Mode 2 employed under low solar irradiance conditions and Mode 3 used to harness excess solar energy for power generation. Economic analysis indicates that due to the addition of solar mirror fields and related equipment, the integrated system incurs a significantly higher investment cost of $468,911, compared to $51,939 for the conventional system. Its levelized cost of electricity (LCOE) is also higher, at 0.113 $/kWh versus 0.059 $/kWh. However, the solar-assisted system offers a notably shorter payback period of 10.78 years, in contrast to 19.05 years for the traditional system. In addition, the influence of the solar mirror field size on the system’s cost-effectiveness was examined through sensitivity analysis, underscoring the critical role of proper system design in enhancing economic benefits.
S
SunView 深度解读
该太阳能辅助液态CO2储能系统对阳光电源光储融合方案具有重要参考价值。系统通过太阳能热场提升储能效率,与我司ST系列PCS及PowerTitan储能系统的多模式运行策略高度契合。研究中的三模式切换逻辑可优化我司iSolarCloud平台的智能调度算法,特别是在光照波动场景下的能量管理。虽然液态CO2技术路线与我司主流电化学储能不同,但其高能量密度和选址灵活性为分布式储能提供新思路,可结合SG系列光伏逆变器探索光热储一体化解决方案,提升系统全年发电性能和经济性。