← 返回
壳管式反应器中氢氧化钙/氧化钙热化学反应的数值研究:放热过程分析与太阳能-热化学冷热电联供系统优化
Numerical investigation of calcium hydroxide/calcium oxide thermochemical reactions in shell-tube reactors: exothermic process analysis and solar-thermochemical combined cooling, heating, and power optimization
| 作者 | Jianing Chena · Xueming Yanga · Yinqiao Huoa · Weichen Liang · Huiqi Lib · Jianfei Xiec |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Three-dimensional shell-tube reactor model for calcium oxide exothermic processes. |
语言:
中文摘要
摘要 热化学储能技术具有高能量密度和长期储能能力,可有效应对太阳能间歇性问题,其中氢氧化钙/氧化钙体系因原料丰富且环境友好而尤为具有应用前景。然而,目前对放热过程中的传热机制及运行参数对壳管式反应器性能的影响尚不充分明确,且该体系与聚光太阳能系统的集成缺乏全面的优化研究。本研究旨在通过先进的建模与性能优化方法,系统性地探究放热过程,并开发一种集成化的太阳能-热化学冷热电联供系统。为此,建立了一个耦合传热、传质与化学反应的三维数值模型,开展温度、孔隙率、蒸汽流速和导热系数等参数的影响研究;随后构建系统模型,并采用多准则决策方法进行能量、㶲、经济性和环境影响的综合分析。在533开尔文的最佳运行温度下,系统实现了1600瓦的最大放热功率,反应完成时间为4400秒;降低孔隙率可延长热量输出持续时间,0.09米/秒的最优蒸汽流速提升了系统性能,而提高导热系数并通过增加换热管数量显著增强了传热性能。集成系统实现了58.98%的能量效率、51.35%的㶲效率,发电量达46.28兆瓦时,供热输出为7.08兆瓦时,制冷能力为1.39兆瓦时,投资回收期为15.99年。本研究通过展示太阳能-热化学冷热电联供系统在可再生能源应用中的工程可行性,为反应器优化提供了深入的数值模拟依据。
English Abstract
Abstract Thermochemical energy storage technology offers high energy density and long-term storage capability of addressing solar energy intermittency, with calcium hydroxide/calcium oxide systems particularly promising due to abundant raw materials and environmental friendliness. Effects of the exothermic heat transfer mechanisms and operating parameters on shell-tube reactor performance are not well understood, and integration with concentrated solar power systems lacks comprehensive optimization studies. This study aims to systematically investigate the exothermic process and develop an integrated solar-thermochemical combined cooling, heating and power system through advanced modeling and performance optimization. A three-dimensional numerical model coupling heat and mass transfer with chemical reactions was developed, with parametric studies on examining effects of temperature, porosity, steam velocity, and thermal conductivity, followed by system modeling and energy, exergy, economic, and environmental analysis using multi-criteria decision methods. At the optimal operating temperature of 533 Kelvin, the system achieved peak exothermic power of 1600 W with reaction completion of 4400 s, while reduced porosity extended the heat output duration, optimal steam velocity of 0.09 m per second enhanced performance, and improved thermal conductivity along with significantly enhanced heat transfer performance by increasing tube number. The integrated system achieved energy efficiency of 58.98 %, exergy efficiency of 51.35 %, electricity generation of 46.28 megawatt-hours, heating output of 7.08 megawatt-hours, and cooling capacity of 1.39 megawatt-hours with payback period of 15.99 years. This work provides numerical insights for reactor optimization by demonstrating the engineering feasibility of solar-thermochemical combined cooling, heating, and power systems for renewable energy applications.
S
SunView 深度解读
该热化学储能技术为阳光电源ST系列储能系统提供长时储能方案参考。钙基热化学反应的高能量密度(1600W峰值功率)和长期储能特性,可与PowerTitan系统形成互补,优化冷热电三联供架构。研究中的壳管式反应器传热优化方法,对储能PCS热管理设计具有借鉴意义。该系统58.98%能量效率和15.99年投资回收期,为光储一体化项目经济性评估提供新维度,特别适用于工商业多能互补场景,可结合iSolarCloud平台实现热化学储能与电化学储能的协同调度优化。