← 返回
一种新型钻孔热能储存系统的实验研究:通过低品位能量的有效分配提升性能
Experimental study on an innovative borehole thermal energy storage system: Improving performance through effective allocation of low-grade energy
| 作者 | Zhiru Huag · Tianshuang Lia · Ruofeng Maoa · Teng Xiong · Ruiqing Duc · Yao Taod · Jiyuan Tue · Qizhi Yanga · Yong Wanga · Lizhong Yangf · Alessandro Romagnoli |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Novel High- & Low-Grade Reservoirs BTES design with partitioned operation mechanism. |
语言:
中文摘要
摘要 钻孔热能储存(BTES)系统在建筑能源系统的脱碳过程中发挥着关键作用,但仍面临诸多限制,包括较高的热损失、较长的预热周期以及结构上的低效率问题。本研究提出了一种创新的BTES结构设计,通过分区运行机制和高-低品位储热区布局来应对上述挑战。与传统的径向串联式系统不同,本设计战略性地利用多品位能量输入以优化热性能。通过全面的沙箱实验,对比了三种不同的配置方案(高-低品位储热区、单储热区并联式、单储热区串联式),结果表明,在季节性储热过程中,并联连接方式的储热能力比串联配置高出19%。在周边区域引入低品位能量屏障后,充电阶段的充电速率最高提升了39%,储热容量提高了12%–15%;同时在季节性储热过程中,蓄热量提高了28%,㶲损降低了30%。所有配置的能量密度衰减均遵循精确的对数分布规律(R² ≥ 0.998),而本研究所提出的创新设计可使储热持续时间延长最多达33.8天。该研究揭示了非均匀储热机制下地下温度场的演化规律,为推进BTES在近零碳建筑能源系统中的应用提供了关键数据支持。所提出的系统构型通过协同优化建筑热系统中的能量收集、储存与供给过程,代表了可持续能源集成领域的一项重要进展。
English Abstract
Abstract Borehole Thermal Energy Storage (BTES) systems play a crucial role in decarbonizing building energy systems, yet face significant limitations, including high heat losses, extended preheating periods, and structural inefficiencies. This study introduces an innovative BTES configuration that addresses these challenges through a partitioned operational mechanism and a High- & Low-Grade Reservoirs layout. Unlike conventional radially series-connected systems, our design strategically utilizes multi-grade energy inputs to optimize thermal performance. Through comprehensive sandbox experiments comparing three distinct configurations (High- & Low-Grade Reservoirs, Single Reservoir-Parallel, and Single Reservoir-Series), we demonstrate that parallel connections outperform series configurations by 19 % in heat storage capacity during seasonal storage. Integrating a low-grade energy barrier in peripheral areas increased the charging rate by up to 39 % and storage capacity by 12–15 % during the charging phase while enhancing heat storage by 28 % and reducing exergy destruction by 30 % during seasonal storage. Energy density decay in all configurations follows a precise logarithmic distribution (R 2 ≥ 0.998), with our innovative design extending storage duration by up to 33.8 days. This research reveals the evolution of subterranean temperature fields within a non-uniform heat storage mechanism and provides essential data for advancing BTES applications in net-zero carbon building energy systems. The proposed configuration represents a significant advancement in sustainable energy integration by synergistically optimizing energy collection, storage, and supply within building thermal systems.
S
SunView 深度解读
该BTES地热储能技术对阳光电源储能系统具有重要启示价值。研究中的分区运行机制和多级能量优化配置策略,可借鉴应用于ST系列PCS的热管理系统设计,通过高低温分区控制提升PowerTitan储能柜的充放电效率。其39%充电速率提升和30%火用损失降低的成果,为大规模ESS解决方案的温控优化提供数据支撑。结合iSolarCloud平台的预测性维护功能,可实现储能系统全生命周期的热场监测与能效管理,助力零碳建筑能源系统集成应用。