← 返回
基于深紫外光激发的低功耗Ga2O3纳米突触器件用于神经形态计算
Deep-UV-photo-excited synaptic Ga2O3 nano-device with low-energy consumption for neuromorphic computing
| 作者 | Liubin Yang1Xiushuo Gu1Min Zhou2Jianya Zhang3Yonglin Huang4Yukun Zhao5 |
| 期刊 | 半导体学报 |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 46 卷 第 2 期 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Liubin Yang Xiushuo Gu Min Zhou Jianya Zhang Yonglin Huang Yukun Zhao 半导体学报(英文版) Journal of Semiconductors |
语言:
中文摘要
突触纳米器件在逻辑、存储与学习方面具有强大能力,是构建类脑神经形态计算系统的关键组件。本文成功研制了一种基于Ga2O3纳米线的低功耗突触纳米器件,在255 nm光照下可模拟生物突触的多种功能,如脉冲易化、峰时依赖可塑性及记忆学习能力。该器件展现出优异的“学习-遗忘-再学习”特性,其短时至长时记忆的转变及逐步学习后的记忆保持归因于Ga2O3纳米线的强再学习能力。单次突触事件能耗低于2.39×10⁻¹¹ J,并在长期刺激与存储中表现出高稳定性。应用于神经形态计算时,经12轮训练后数字识别准确率超90%,凸显其卓越的学习性能。本工作为低功耗神经形态硬件与人工智能系统的发展提供了有效路径。
English Abstract
Synaptic nano-devices have powerful capabilities in logic,memory and learning,making them essential compo-nents for constructing brain-like neuromorphic computing systems.Here,we have successfully developed and demonstrated a synaptic nano-device based on Ga2O3 nanowires with low energy consumption.Under 255 nm light stimulation,the biomimetic synaptic nano-device can stimulate various functionalities of biological synapses,including pulse facilitation,peak time-dependent plasticity and memory learning ability.It is found that the artificial synaptic device based on Ga2O3 nanowires can achieve an excellent"learning-forgetting-relearning"functionality.The transition from short-term memory to long-term memory and retention of the memory level after the stepwise learning can attribute to the great relearning functionality of Ga2O3 nanowires.Furthermore,the energy consumption of the synaptic nano-device can be lower than 2.39×10-11 J for a synaptic event.Moreover,our device demonstrates exceptional stability in long-term stimulation and storage.In the applica-tion of neural morphological computation,the accuracy of digit recognition exceeds 90%after 12 training sessions,indicating the strong learning capability of the cognitive system composed of this synaptic nano-device.Therefore,our work paves an effective way for advancing hardware-based neural morphological computation and artificial intelligence systems requiring low power consumption.
S
SunView 深度解读
该Ga2O3纳米突触器件的低功耗神经形态计算技术对阳光电源智能控制系统具有前瞻性启发价值。其2.39×10⁻¹¹J的超低单次事件能耗和自适应学习能力,可应用于iSolarCloud云平台的智能诊断算法优化,通过类脑计算实现光伏/储能系统的故障模式识别与预测性维护。在ST储能变流器和PowerTitan系统中,该神经形态芯片可用于实时功率调度决策,替代传统FPGA实现更低功耗的MPPT算法和GFM控制策略优化。其短时-长时记忆转换机制对构网型储能系统的自适应频率调节、电网扰动学习具有借鉴意义,为下一代边缘智能控制器提供硬件架构新思路。