← 返回
多能系统中协调能源管理的技术经济评估:地下储能与基于人工智能的海上调度的成本有效集成
Techno-economic assessment of coordinated energy management in multi-vector systems: Cost-effective integration of underground storage and AI-Based maritime scheduling
| 作者 | Ali Taghav · Taher Nikna · Mohsen Gitizade · Sattar Shojaeiya |
| 期刊 | Energy Conversion and Management |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 346 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Novel hydrogen-centric framework integrates multi-vector energy systems with storage. |
语言:
中文摘要
摘要 集成能源系统(IES)在提升能源灵活性和实现脱碳方面具有巨大潜力。然而,当前的实施通常存在孤岛式运行和跨部门协调不足的问题。特别是传统的地下氢储能(UHS)系统通常独立运行,降低了其在互联能源网络中的有效性,尤其是在地质储层与海运基础设施可协同利用的沿海地区。为克服这些局限性,本研究提出了一种以氢为核心的集成能源系统框架,该框架融合了多能向量建模、混合型UHS配置以及基于人工智能的海上协调策略。这些创新提升了系统的动态运行能力、能量转换效率及整体灵活性,尤其适用于地质储能与港口基础设施交汇的沿海区域。该框架引入三项核心创新:(1)一种统一的多能向量建模方法,将电力、热力、燃气和水网与混合型UHS相结合,实现全面的部门耦合分析;(2)在混合型UHS系统内对电解槽、燃料电池和地质储能进行协调运行,以优化氢气的生产与利用;(3)一种海上能源策略,即氢动力船舶在靠港期间作为移动能源资产,通过基于XGBoost的AI驱动调度系统,将船舶运行与可再生能源发电和能源需求波动动态匹配,从而参与本地电网服务。该框架被构建为一个混合整数线性规划(MILP)优化模型,其中AI驱动的调度机制在满足海上运营约束的同时,同步优化整个IES的总体目标。仿真结果表明,该系统显著提升了性能,包括氢系统效率提高11.81%,港口相关收入增长67.9%,同时确保所有集成能源向量之间的供需持续平衡。对比分析验证了AI驱动方法的优越性,而针对关键跨部门参数的敏感性分析则证实了该框架的鲁棒性。这些发现凸显了该框架作为可扩展解决方案的潜力,可用于实现灵活、高效且经济最优的集成能源系统。该框架特别有利于沿海地区,充分利用地下储能能力与海运基础设施的交汇优势,推动增强型跨部门整合与协调化的能源系统运行。
English Abstract
Abstract Integrated energy systems (IES) hold significant potential for enhancing energy flexibility and decarbonization. However, current implementations often suffer from siloed operation and limited cross-sector coordination. In particular, traditional underground hydrogen storage (UHS) systems typically operate independently, reducing their effectiveness within interconnected energy networks, especially in coastal regions where geological storage and maritime infrastructure could be synergistically utilized. To address these limitations, this study proposes a hydrogen-centric IES framework that integrates multi-vector energy modeling, a hybrid UHS configuration, and an AI-driven maritime coordination strategy. These innovations enhance dynamic operation, energy conversion efficiency, and system-wide flexibility, especially in coastal regions where geological storage and port infrastructure converge. The framework introduces three core innovations: (1) a unified multi-vector modeling approach that integrates electrical, thermal, gas, and water networks with hybrid UHS for comprehensive sector-coupled analysis; (2) coordinated operation of electrolyzers, fuel cells, and geological storage within a hybrid UHS system to optimize hydrogen production and utilization; and (3) a maritime energy strategy in which hydrogen-powered vessels serve as mobile energy assets during port stays, contributing to local grid services via an AI-driven scheduling system based on XGBoost, which dynamically aligns vessel operations with fluctuations in renewable generation and energy demand. The framework is formulated as an MILP optimization model, with the AI-driven scheduling simultaneously optimizing IES-wide objectives while respecting maritime operational constraints. Simulation results demonstrate notable improvements, including an 11.81% increase in hydrogen system efficiency and a 67.9% rise in port-based revenue, while ensuring a continuous supply–demand balance across all integrated energy vectors. Comparative analysis validates the superiority of the AI-driven approach, and sensitivity analysis across key cross-sectoral parameters confirms the framework’s robustness. These findings highlight the framework’s potential as a scalable solution for achieving flexible, efficient, and economically optimized IES. It is particularly advantageous for coastal regions, capitalizing on the convergence of subsurface storage capabilities and maritime infrastructure to enable enhanced cross-sector integration and coordinated energy system operation.
S
SunView 深度解读
该多能源协同框架对阳光电源储能系统具有重要启示。研究中的氢储能与电网协调优化策略可应用于ST系列PCS与PowerTitan储能系统的多场景调度。AI驱动的能源管理方法可集成至iSolarCloud平台,实现光伏-储能-充电站的跨场景协同优化。特别是港口移动储能资产调度思路,可拓展至电动船舶充电站与岸电系统开发,结合GFM控制技术提升沿海工业园区微网的灵活性与经济性,为综合能源解决方案提供技术路径。