← 返回
储能系统技术 储能系统 ★ 5.0

锡掺杂三维海胆状W18O49材料用于超级电容器

Sn-doped three-dimensional sea urchin-like morphology of W18O49 marterials for supercapacitor

作者 Yanmei Li · Jin Hu · Huachao Huang · Zheng Liu · Jiaxin Fu · Kaijun Wang · Kaizhao Wang
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 高性能超级电容器 W18O49 锡掺杂 三维海胆状多级结构 电化学性能
语言:

中文摘要

高性能超级电容器对于推动储能器件的发展至关重要,而优异的活性材料是实现这一目标的关键。W18O49被认为是一种极具前景的电极材料,在能量转换与存储领域具有广泛应用,例如以纳米线和纳米棒形式存在时表现突出。然而,该材料仍面临诸如导电性低和活性位点不足等挑战。异原子掺杂策略已被证明有效,例如锡(Sn)掺杂具有提升基体性能的潜力,但此前尚未在W18O49材料中进行探索。本研究通过一种简便的一锅溶剂热法,精心设计并合成了系列锡掺杂的W18O49材料。通过多种分析手段证实了锡的成功掺杂,并观察了不同锡掺杂浓度下材料结构的变化。其中最优材料为3% Sn-W18O49,其表现出独特的三维海胆状结构,经扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察得以确认。此外,X射线衍射(XRD)结果显示,在较高锡掺杂量(如5%和7% Sn-W18O49)样品中出现了与SnO杂质相关的衍射峰。电化学测试表明,3% Sn-W18O49电极在4 A∙g−1电流密度下具有高达546 F∙g−1的比电容,并展现出优异的长期循环稳定性,在6000次恒电流充放电(GCD)循环后仍保持86%的电容。性能的提升归因于最佳锡掺杂显著改善了W18O49材料的电导率、比表面积以及活性位点数量。本研究凸显了锡掺杂W18O49材料在电化学性能方面的广阔应用前景。

English Abstract

High-performance supercapacitors are essential for advancing energy storage devices, and superior active materials are crucial for this purpose. W 18 O 49 is recognized as a highly promising electrode material, such as in the form of nanowires and nanorods, for energy conversion and storage. However, it still faces challenges like low conductivity and insufficient active sites. The strategy of heteroatom doping has shown effectiveness, such as tin (Sn), which has potential for enhancing matrix performance, but it has not been explored for W 18 O 49 materials. Herein, a series of Sn-doped W 18 O 49 materials are carefully designed and synthesized using a straightforward one-pot solvent-thermal method in this study. Various analyses are conducted to confirm successful Sn doping and to observe structural changes with different Sn concentrations. The optimal material is identified as 3% Sn-W 18 O 49 , which displays a unique 3D sea urchin-like structure as observed via SEM and TEM. Furthermore, XRD peaks related to SnO impurities are noted at higher Sn doping levels, such as 5% and 7% Sn-W 18 O 49 . Electrochemical testing reveals a high specific capacitance of 546 F∙g −1 at 4 A∙g −1 for the 3% Sn-W 18 O 49 electrode, alongside excellent long-term cycling stability with an 86% capacitance retention after 6000 GCD cycles. The enhanced performance is attributed to the improved electrical conductivity, surface area, and active sites of the W 18 O 49 through optimal Sn doping. This research highlights the promising electrochemical properties of Sn-doped W 18 O 49 materials.
S

SunView 深度解读

该Sn掺杂W18O49超级电容器材料技术对阳光电源储能系统具有重要参考价值。其546 F·g⁻¹高比电容和86%循环稳定性可应用于ST系列PCS的直流侧缓冲电容优化,提升PowerTitan储能系统的功率响应速度和循环寿命。三维海胆状结构提供的高比表面积和活性位点设计思路,可借鉴于SiC/GaN功率器件的散热结构优化。该材料的快速充放电特性适配充电桩的脉冲功率需求,为iSolarCloud平台的储能单元健康管理提供新型电容技术方案,助力构建高功率密度的混合储能拓扑架构。