← 返回
用于锂离子电容器的碳材料预锂化及其电化学性能研究
Electrochemical performances through pre-lithiation of carbon materials for lithium-ion capacitor application
| 作者 | Zambaga Otgonbayar |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | 锂离子电容器 预锂化碳材料 结构稳定性 循环性能 电化学表征 |
语言:
中文摘要
锂离子电容器(LICs)通过提供高能量密度和高功率密度,填补了电池与超级电容器之间的性能空白。然而,负极材料的局限性常常制约其整体效率,特别是由于初始锂离子损失以及结构不稳定性所致。本研究通过电化学预锂化方法合成预锂化碳化合物(PLCCs),以解决上述问题。采用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)和拉曼光谱等手段进行结构与化学分析,证实了含锂化合物(如Li₂CO₃和Li₂O)的生成,这些化合物有效促进了离子扩散并提升了电极稳定性。本研究旨在通过对这些化合物的前期研究,解决LIC中已预测存在的技术难题。对比电化学评估结果表明,预锂化石墨显著改善了LIC的性能,通过稳定锂离子扩散过程并降低阻抗实现性能提升。循环伏安法、Tafel曲线及电化学阻抗谱(EIS)分析显示,预锂化石墨具有更低的表面电阻和更稳定的电流密度,有利于高效的嵌锂-脱锂循环。扫描电子显微镜(SEM)和透射电子显微镜(TEM)图像进一步表明,锂分布更加均匀,表面退化程度降低,从而在高电流条件下延长了循环寿命。本研究揭示,电化学法制备的预锂化石墨不仅提高了比容量和能量密度,还显著增强了功率密度及电极耐久性。总体而言,这些研究成果确立了电化学合成的PLCCs作为高性能LIC负极材料的有力候选者,并为下一代储能系统的发展路径提供了重要启示。
English Abstract
Lithium-ion capacitors (LICs) bridge the performance gap between batteries and supercapacitors by providing high energy and power densities. However, anode limitations often constrain the overall efficiency, particularly due to initial lithium-ion loss and structural instability. This study addresses these limitations by synthesizing pre-lithiated carbon compounds (PLCCs) via electrochemical pre-lithiation. Structural and chemical analyses, including XRD, FTIR, and Raman spectroscopy, confirmed the formation of lithium-containing compounds, such as Li 2 CO 3 and Li 2 O, which enhanced ion diffusion and electrode stability. This study aims to solve the problems predicted in LIC through prior research on these compounds. Comparative electrochemical evaluations revealed that pre-lithiated graphite significantly improved LIC performance by stabilizing lithium-ion diffusion and reducing impedance. Analysis through cyclic voltammetry, Tafel plots, and EIS demonstrated lower surface resistance and stable current density in pre-lithiated graphite, supporting efficient lithiation-delithiation cycles. SEM and TEM imaging further indicated a more uniform lithium distribution and reduced surface degradation, which together extended the cycle life under high-current conditions. This study highlights that electrochemically pre-lithiated graphite not only enhances the specific capacity and energy density but also contributes to improved power density and electrode durability. Overall, these findings establish electrochemically synthesized PLCCs as promising candidates for high-performance LIC anodes, offering insights into potential pathways for next-generation energy storage systems.
S
SunView 深度解读
该锂离子电容器预锂化技术对阳光电源ST系列储能变流器及PowerTitan系统具有重要价值。预锂化石墨负极通过降低阻抗、提升循环稳定性,可显著改善储能系统功率密度和循环寿命,契合大规模储能应用需求。该技术在电化学阻抗谱和塔菲尔分析中展现的低表面电阻特性,可为阳光电源储能PCS的快速充放电控制策略提供优化方向,并为充电桩产品的高倍率应用场景提供电芯技术参考,助力提升系统能量转换效率和全生命周期经济性。