← 返回
储能系统技术 储能系统 ★ 5.0

植物介导的氧化锌纳米颗粒绿色合成及其作为高比电容超级电容器电极的应用

Plant mediated-green synthesis of ZnO nanoparticles as a high capacitance electrode for supercapacitor applications

作者 No Funding was received for this work.
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 绿色合成 超级电容器 氧化锌 柠檬提取物 电容性能
语言:

中文摘要

由于其成本低廉且环境友好,通过绿色方法合成的超级电容器电极在能量存储应用中受到广泛关注。由于具备多种优异的物理化学特性,氧化锌(ZnO)已成为超级电容器领域中的特种功能材料。本研究采用共沉淀法结合热退火工艺,成功制备了纯ZnO纳米颗粒(ZnO NPs)以及添加香橼(Citron, CT)果皮提取液的ZnO纳米颗粒(ZnO–CT NPs)。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、能量色散X射线光谱分析(EDAX)、透射电子显微镜(TEM)、傅里叶变换红外光谱(FTIR)以及紫外-可见漫反射光谱(UV-Drs)对所制备的ZnO和ZnO–CT NPs的理化性质与光学特性进行了系统表征。将所得的纯ZnO NPs和ZnO–CT NPs涂覆于电极表面,并在水系电解质溶液中对其电荷存储性能进行评估。结果表明,ZnO–CT电极在4 A g⁻¹的电流密度下实现了约2032 F g⁻¹的比电容,显著高于纯ZnO电极的约1040 F g⁻¹。此外,该电极在1500次恒电流充放电(GCD)循环后仍保持了90%的优异循环稳定性。本研究表明,采用可再生资源路径合成ZnO纳米颗粒的方法具有广阔前景,是一种面向绿色能源存储技术的潜在候选材料。

English Abstract

As a result of its cost-effectiveness and eco-friendliness, the green-synthesised supercapacitor electrodes were gaining much attention in energy storage applications. Due to its versatile properties, Zinc Oxide (ZnO) is a specialised material in supercapacitor applications. In this research work, pure ZnO nanoparticles (ZnO NPs) and Citron (CT) fruit peel extract solution added ZnO nanoparticles (ZnO–CT NPs) were prepared via co-precipitation technique followed by a thermal annealing method. X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Ultraviolet–Visible Diffuse Reflectance Spectroscopy (UV-Drs) confirmed the physico-chemical and optical properties of as-prepared ZnO and ZnO–CT NPs. The obtained pure ZnO NPs and ZnO-CT NPs coated supercapacitor electrodes were analysed for the charge storage activities in an aqueous electrolyte solution. As a result, the ZnO-CT electrode achieves the capacitance of ~ 2032 F g −1 at the current density value of 4 A g −1 , which is higher than pure ZnO capacitance of ~ 1040 F g −1 . Further, this electrode attained a superior stability retention of 90% in 1500 Galvanostatic Charge/Discharge (GCD) cycles. This work demonstrates that the renewable route approach to synthesise ZnO nanoparticles was considered a potential material towards green energy storage technology.
S

SunView 深度解读

该植物介导绿色合成ZnO纳米材料超级电容器技术对阳光电源ST系列储能变流器和PowerTitan储能系统具有重要参考价值。ZnO-CT电极实现2032 F/g比电容和90%循环稳定性,为储能系统功率型应用提供新思路。其绿色制备工艺与快速充放电特性可启发混合储能方案优化,特别适用于充电站削峰填谷和电网调频场景,提升PCS功率响应速度和系统循环寿命,契合阳光电源绿色能源战略。