← 返回
通过抑制载流子传输提升COC的高温储能性能
Enhanced high-temperature energy storage performance of COC by suppressing carrier transport
| 作者 | Yiwei Zhang · Jiaqi Zhang · Qiyue Zhang · Changhai Zhang · Tiandong Zhang · Yongquan Zhang · Yue Zhang |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 聚合物介质 分子陷阱 环烯烃共聚物 高温储能 导电损耗 |
语言:
中文摘要
聚合物电介质薄膜电容器是现代电子系统中关键的储能器件。然而,传统的电介质材料在高温下具有较高的导通损耗。因此,我们提出了一种基于分子陷阱的协同调控策略,以提高环烯烃共聚物(COC)的高温储能性能。首先,通过结构设计将极性基团马来酸酐(MAH)引入COC分子链中,形成深能级陷阱,从而抑制分子内电荷传输。此外,通过引入具有高电子亲和能(2.6–2.8 eV)的分子半导体PCBM构建分子间电荷陷阱,实现分子内与分子间电荷传输的共同抑制。结果表明,在120 ℃、620 kV/mm条件下,COC-g-MAH/PCBM-0.10的最大放电能量密度(Ue)达到4.47 J/cm³,效率(η)高于90%,比纯COC提高了85%。值得注意的是,在120 ℃和500 kV/mm条件下经过50,000次充放电循环后,COC-g-MAH/PCBM-0.10的效率仍保持在92%,证明其具有优异的高温循环稳定性。这种基于陷阱设计的策略为开发兼具高储能性能与稳定性的先进电介质材料提供了新范式,在实际应用中展现出显著潜力。
English Abstract
Polymer dielectric film capacitors serve as crucial energy storage devices in modern electronic systems. However, the conventional dielectric materials have high conduction loss at elevated temperature. Hence, we propose a synergistic regulation strategy based on molecular traps to improve the high-temperature energy storage performance of cyclic olefin copolymer (COC). Firstly, the polar group maleic anhydride (MAH) is introduced into the COC molecular chain through the structure design, which creates deep energy traps to suppress intrachain charge transport. Furthermore, the intermolecular charge trap is constructed by introducing molecular semiconductor PCBM, which has high electron affinity energy (2.6–2.8 eV), realizing the intramolecular and intermolecular charge transport co-inhibition. The results show that COC-g-MAH/PCBM-0.10 exhibits a maximum discharge energy density ( U e ) of 4.47 J/cm 3 under 620 kV/mm at 120 ℃, and the efficiency ( η ) above 90%, which is 85% higher than COC. It’s noteworthy that at 120 ℃ and 500 kV/mm, after 50,000 charge–discharge cycles, the η of COC-g-MAH/PCBM-0.10 still remains at 92%, proving it has excellent high-temperature cycling stability. This strategy based on trap design provides a new paradigm for advanced dielectric materials with high energy storage performance and stability, demonstrating significant potential for practical applications.
S
SunView 深度解读
该聚合物电介质薄膜电容技术对阳光电源储能系统具有重要应用价值。COC-g-MAH/PCBM材料在120℃高温下实现4.47 J/cm³能量密度和90%以上效率,可应用于ST系列PCS的直流支撑电容和PowerTitan储能系统的高温工况。其5万次循环后仍保持92%效率的特性,可显著提升储能变流器在沙漠、热带等极端环境下的可靠性和功率密度。分子陷阱抑制载流子传输的策略,为SiC/GaN功率器件的栅极驱动电路和母线电容优化提供新思路,助力三电平拓扑在高温场景的性能提升。