← 返回
储能系统技术 储能系统 ★ 5.0

己二胺辅助的氧化锌纳米颗粒表面改性用于介电性能调控及增强非对称超级电容器器件性能

Hexanediamine-assisted surface modification of ZnO nanoparticles for dielectric property tailoring and enhanced asymmetric supercapacitor device performance

作者 The Chairman
期刊 Journal of Materials Science: Materials in Electronics
出版日期 2025年1月
卷/期 第 36.0 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 多功能纳米材料 介电性能 电化学活性 氧化锌纳米颗粒 超级电容器
语言:

中文摘要

开发兼具优异介电性能和电化学性能的多功能纳米材料,对于推动现代电子技术和储能技术的发展至关重要。本研究合成了己二胺功能化的氧化锌纳米颗粒(ZnO NPs),并对其进行了系统性研究。氧化锌纳米颗粒成功地与1,6-己二胺进行了表面功能化,综合分析证实了其结构、光学、化学和形貌特性的改变,验证了功能化过程的有效性。PXRD结果表明,包覆后样品的结晶度提高且晶粒尺寸增大;FTIR谱图通过特征性的NH和CH2振动峰证实了胺基的成功接枝。光学研究表明,由于量子限域效应,包覆后的ZnO纳米颗粒在吸收光谱中表现出蓝移现象,并且陷阱态发射减少,其带隙分别为3.02 eV(纯ZnO)和2.87 eV(包覆样品)。TEM分析表明,经己二胺修饰后的ZnO纳米颗粒呈现出六边形形貌,分散性改善,团聚减少。功能化ZnO纳米颗粒的介电性能测试显示,在1 MHz频率下,其实部和虚部介电常数分别为115和99。此外,该材料在相同频率下的交流电导率达到0.0056 Ω⁻¹ mm⁻¹,显示出其在先进电子器件应用中的潜力。为进一步探究其电化学性能,构建了一种非对称型器件,该器件表现出良好的循环稳定性。在15 mA cm⁻²的电流密度下经过15,000次循环后,器件仍保持了81%的比电容,并实现了近100%的库仑效率。该器件在1 mA cm⁻²时展现出10.94 mWh cm⁻²的高能量密度,在10 mA cm⁻²时功率密度达到5000 mW cm⁻²。上述结果突显了该器件优越的性能和长期耐久性,使其成为先进储能应用中极具前景的候选材料。最后,通过实际演示一个实时工作的超级电容器,展示了功能化ZnO纳米颗粒在储能技术中的实际应用潜力。

English Abstract

The development of multifunctional nanomaterials with both superior dielectric and electrochemical properties is crucial for advancing modern electronic and energy storage technologies. In this study, hexanediamine-functionalized zinc oxide nanoparticles (ZnO NPs) were synthesized and systematically investigated. ZnO nanoparticles were successfully functionalized with 1,6-hexanediamine, and comprehensive analysis confirmed modifications in structural, optical, chemical, and morphological properties, validating the effectiveness of the functionalization process. PXRD confirmed enhanced crystallinity and increased crystallite size upon capping, while FTIR verified successful amine functionalization through characteristic NH and CH 2 vibrations. Optical studies revealed a blue shift in absorption and reduced trap emissions in capped ZnO NPs due to quantum confinement, with band gaps of 3.02 eV (pure) and 2.87 eV (capped). TEM analysis confirmed improved morphology and dispersion in capped ZnO NPs with hexagonal shape and reduced agglomeration. The dielectric behavior of the functionalized ZnO NPs showed real and imaginary dielectric permittivity of 115 and 99 at 1 MHz, respectively. Additionally, the material exhibited an AC conductivity of 0.0056 Ω -1 mm -1 , highlighting its potential for advanced electronic application. Furthermore, an asymmetric device was fabricated to investigate the electrochemical properties, which displayed cyclic stability. After 15,000 cycles at a current density of 15 mA cm -2 , the device retained 81% of its capacitance and achieved nearly 100% Coulombic efficiency. The device also exhibited notable energy and power densities of 10.94 mWh cm -2 at 1 mA cm -2 and 5000 mW cm -2 at 10 mA cm -2 , respectively. These findings underscore the device’s superior performance and long-term durability, positioning it as a desirable candidate for advanced energy storage applications. Finally, a real-time supercapacitor was demonstrated, showcasing the practical application of the functionalized ZnO NPs in energy storage technologies.
S

SunView 深度解读

该六亚甲基二胺改性ZnO纳米材料技术对阳光电源储能系统具有重要应用价值。其优异的介电性能(1MHz下介电常数达115)可优化ST系列PCS的功率器件绝缘设计,提升SiC/GaN模块的散热与电气性能。非对称超级电容器展现的81%容量保持率(15000次循环)和10.94mWh/cm²能量密度,可为PowerTitan储能系统提供高功率缓冲单元,改善GFM控制下的动态响应。纳米材料的高AC电导率(0.0056Ω⁻¹mm⁻¹)为三电平拓扑中的母线电容器小型化提供新思路,助力储能系统功率密度提升与iSolarCloud平台的预测性维护算法优化。