← 返回
纳米结构的钌钴氧化物电极用于提升超级电容器性能
Nanostructured ruthenium cobalt oxide electrodes for enhanced supercapacitor performance
| 作者 | Avdhut S. Sutar · Jayshri L. Patil · Bhagyasree A. Sutar · Rutuja A. Chavan |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 过渡金属氧化物 钌钴氧化物 超级电容器 电极材料 化学沉积法 |
语言:
中文摘要
过渡金属氧化物(TMOs)作为超级电容器中储能应用的电极材料具有重要的应用前景。钌钴氧化物(RuCo2O4)因其具备高氧化还原活性、优良的导电性以及多孔纳米结构的潜力,成为高性能储能应用中有前途的候选材料。本研究探讨了通过一种低成本且潜在环境友好的化学镀法合成RuCo2O4薄膜的过程。系统地评估了在100、200和300 °C下退火2小时对所得RuCo2O4薄膜的结构、形貌和电化学性能的影响。这些退火温度对材料的结晶性和孔隙率具有显著影响,而这两个关键因素有助于提升电化学性能。其中,在200 °C退火的薄膜表现出最优的性能,在10 mV s⁻¹的扫描速率下实现了1732 F g⁻¹的比电容(Cs)。该优异性能还体现在循环伏安(CV)曲线中,呈现出清晰明确的氧化还原峰,表明其具有赝电容行为。电化学性能的提升归因于在200 °C退火薄膜中观察到的多孔纳米结构,该结构在电化学反应过程中提供了更高的活性表面积和更快的离子传输通道。这种简单且低成本的方法展示了RuCo2O4在先进储能应用中的高性能超级电容器中的巨大潜力。
English Abstract
Transition metal oxides (TMOs) hold significant promise as electrode material for energy storage applications in supercapacitors. Ruthenium cobalt oxide (RuCo 2 O 4 ) stands out due to its potential for high redox activity, electrical conductivity, and a porous nanostructure, making it a promising candidate for high-performance energy storage applications. This study investigates the synthesis of RuCo 2 O 4 thin films via a cost-effective and potentially eco-friendly electroless deposition method. The effect of post-deposition annealing at 100, 200, and 300 °C for 2 h on the structural, morphological, and electrochemical properties of the resulting RuCo 2 O 4 films was systematically evaluated. These annealing temperatures have a better impact on the crystallinity and porosity of the materials, these main factors improving the electrochemical performance. The film annealed at 200 °C exhibited superior performance, achieving a specific capacitance ( C s ) of 1732 F g⁻ 1 at a scan rate of 10 mV s⁻ 1 . This enhanced performance was accompanied by cyclic (CV) voltammetry results, with well-defined redox peaks indicative of pseudocapacitive behavior. The improved electrochemical properties are attributed to the porous nanostructure observed in the films annealed at 200 °C, which provides a higher active surface and faster ion transport during the electrochemical reaction. This simple and cost-effective method shows the potential of RuCo 2 O 4 for use in high-performance supercapacitors for advanced energy storage applications.
S
SunView 深度解读
该纳米结构钌钴氧化物超级电容器技术对阳光电源储能系统具有重要参考价值。其1732 F/g的高比电容和优异循环特性可应用于ST系列PCS的直流侧能量缓冲模块,提升功率响应速度。多孔纳米结构带来的快速离子传输特性,可优化PowerTitan储能系统的峰值功率输出能力,特别适合电网调频等高频次充放电场景。该低成本电化学沉积工艺为储能电容器国产化提供技术路径,可与SiC功率器件协同,进一步提升系统功率密度和动态响应性能。