← 返回
Sr和Zr共掺杂锂镧钛酸钙钛矿电解质的优化及其在高性能固态电池中的应用
Optimization of Sr and Zr Co-doping in lithium lanthanum titanate perovskite electrolytes for high-performance solid-state battery applications
| 作者 | Juel Rana |
| 期刊 | Journal of Materials Science: Materials in Electronics |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 36.0 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | 固态电解质 离子电导率 LLTO 掺杂 锂离子传导 |
语言:
中文摘要
具有高锂离子电导率和优异稳定性的固态电解质对于推动下一代储能器件(如固态锂离子电池和传感器技术)的发展至关重要。本研究合成了纯LLTO(Li0.5La0.5TiO3)以及Sr和Zr共掺杂的LLSZTO样品,其通式为(Li0.5La0.5)1−xSr0.5xZr0.05Ti0.95O3。其中Zr的掺杂浓度固定为5%,而Sr的含量分别设定为2%、5%、8%和12%,对应的样品分别标记为2LLSZTO、5LLSZTO、8LLSZTO和12LLSZTO。所有合成样品的结构特性通过X射线衍射(XRD)进行表征,并结合Rietveld精修进一步确认,结果表明材料具有属于P4/mmm空间群的四方钙钛矿晶体结构。除了主相外,物相分析还检测到存在ZrO2和Sr(ZrO3)等第二相。室温下的拉曼光谱和傅里叶变换红外光谱(FTIR)分析分别用于探测晶格振动模式的峰位偏移以及晶体结构的伸缩与振动模式。场发射扫描电子显微镜(FESEM)显示所有样品中晶粒呈随机分布,且随着Sr掺杂浓度的增加,平均晶粒尺寸逐渐增大。值得注意的是,8LLSZTO组分表现出约1.320 μm的最大晶粒尺寸,表明Sr掺杂促进了晶粒生长。互补的能量色散X射线光谱(EDS)分析证实了La、Sr、Zr、Ti和O元素的存在,未检测到任何杂质,确保了材料组成的纯净性。紫外-可见光谱(UV–visible spectroscopy)测量结果显示光学带隙在1.83至1.94 eV之间,突显了该材料在先进储能系统固态电解质应用中的潜在适用性。阻抗谱分析表明,随着Sr掺杂浓度的增加,离子电导率随之提高。在所有组分中,5LLSZTO样品表现出最高的电导率,达到5.4 × 10−4 S/cm,而2LLSZTO样品的电导率最低,为2.3 × 10−4 S/cm。此外,5LLSZTO组分还展现出最高的介电常数和介电损耗,分别为85和0.90。这些结果表明,适当的Sr掺杂能显著改善基于LLTO的固态电解质的电学和介电性能,使其成为应用于先进储能器件的有前景候选材料。本研究系统地探讨了Sr和Zr共掺杂对基于LLTO的钙钛矿型固态电解质电学性能的影响,为优化设计适用于下一代锂离子电池及先进传感器技术的高性能固态电解质提供了有价值的理论依据和实验参考。
English Abstract
Solid electrolytes with high lithium-ion conductivity and excellent stability are essential for advancing next-generation energy storage devices, such as solid-state lithium-ion batteries and sensor technologies. In this study, pure LLTO (Li 0.5 La 0.5 TiO 3 ) and Sr and Zr-co-doped LLSZTO samples with the general formula (Li 0.5 La 0.5 ) 1− x Sr 0.5 x Zr 0.05 Ti 0.95 O 3 were synthesized. The Zr doping concentration was fixed at 5%, while the Sr content was varied at 2%, 5%, 8%, and 12% in the samples designated as 2LLSZTO, 5LLSZTO, 8LLSZTO, and 12LLSZTO, respectively. The structural properties of all synthesized samples were characterized using X-ray diffraction (XRD) and further confirmed by Rietveld refinement, which revealed a tetragonal perovskite crystal structure belonging to the space group P4/mmm. In addition to the primary phase, phase analysis also identified the presence of secondary phases, specifically ZrO 2 and Sr(ZrO 3 ). Raman and FTIR analyses were carried out at room temperature for detecting active modes of vibrations for peak shift and stretching and vibrational modes of crystal structure, respectively. Field emission scanning electron microscopy (FESEM) revealed randomly distributed grains across all synthesized samples, with the average grain size increasing as Sr doping concentration increased. Notably, 8LLSZTO composition exhibited the largest grain size of approximately 1.320 µm, indicating enhanced grain growth. Complementary energy-dispersive spectroscopy (EDS) confirmed the presence of La, Sr, Zr, Ti, and O elements without any detectable impurities, ensuring compositional purity. UV–visible spectroscopy measurements indicated an optical band gap ranging from 1.83 to 1.94 eV, highlighting the material’s potential suitability for solid electrolyte applications in advanced energy storage systems. Impedance spectroscopy revealed that ionic conductivity increased with increasing Sr doping concentration. Among all compositions, the 5LLSZTO sample exhibited the highest electrical conductivity of 5.4 × 10 -4 S/cm, while the 2LLSZTO sample showed the lowest conductivity at 2.3 × 10 -4 S/cm. Furthermore, the 5LLSZTO composition demonstrated the highest dielectric constant and dielectric loss, measured at 85 and 0.90, respectively. These findings indicate that optimal Sr doping significantly enhances the electrical and dielectric properties of LLTO-based solid electrolytes, making them promising candidates for application in advanced energy storage devices. This study systematically investigates the influence of Sr and Zr co-doping on the electrical properties of LLTO-based perovskite solid electrolytes. The results provide valuable insights for optimizing the design of high-performance solid electrolytes for next-generation lithium-ion batteries and advanced sensor technologies.
S
SunView 深度解读
该Sr-Zr共掺杂LLTO固态电解质技术对阳光电源储能系统具有重要参考价值。研究显示5%Sr掺杂可将离子电导率提升至5.4×10⁻⁴ S/cm,为PowerTitan等大规模储能系统未来采用固态电池技术提供材料优化方向。固态电解质的高稳定性和安全性可显著提升ST系列PCS的电池管理性能,降低热失控风险。该钙钛矿结构材料的介电特性优化思路,亦可启发我们在SiC/GaN功率器件的栅极介质层设计中探索新型掺杂方案,提升器件耐压与开关特性,助力储能变流器效率突破98%目标。