← 返回
基于Mn-Fe颗粒的高温储能系统热化学反应动力学
Thermochemical reaction kinetics of Mn-Fe based particles for High-Temperature energy storage systems
语言:
中文摘要
摘要:结合储热技术(TES)的聚光太阳能发电(CSP)系统对于提升可再生能源的稳定性至关重要。然而,CSP技术在效率和成本方面仍面临持续挑战。提高热量收集与储存温度被视为提升效率并降低成本的有效策略。本研究探讨了Mn-Fe颗粒在CSP系统中用于储热的应用,突出了其优异的循环稳定性和适用于高温环境(>900 °C)的特性。我们对氧化动力学进行了详细分析,确定了氧化过程的平衡氧分压(pO₂,eql(Tₒₓ)),发现其起始温度超过850 °C,在较低氧分压下存在明显滞后现象,而在较高氧分压下该滞后则减弱或消失。为了在氧化过程中维持较高的再氧化转化率,必须保持较高的氧分压(>0.16 bar)或较低的冷却速率β。动力学参数以氧分压pO₂和冷却速率β为自变量进行多项式拟合,并进一步探究了这些参数与反应基本物理过程之间的关联。随后,建立了描述Mn-Fe颗粒氧化过程的确定性动力学模型,该模型与实验结果高度吻合(R² = 0.9993)。该模型能够准确描述不同条件下的氧化过程,涵盖氧分压从0.16 bar到0.7 bar、冷却速率从5 K/min到20 K/min的变化范围,为CSP系统中流化床传热条件下Mn-Fe颗粒氧化动态的监测与控制奠定了基础。
English Abstract
Abstract Concentrated Solar Power (CSP) systems, augmented by Thermal Energy Storage (TES), are crucial for enhancing renewable energy stability. However, challenges in CSP technology, particularly efficiency and cost factors, persist. Elevating heat collection and storage temperature stands out as an effective strategy to improve efficiency and reduce costs. In this study, we investigated the use of Mn-Fe particles for thermal energy storage in CSP, highlighting their excellent cycling stability and suitability for high temperatures (>900 °C). We conducted a detailed analysis of the oxidation kinetics. The oxygen partial pressure at equilibrium of oxidation process (pO 2,eql (T ox )) was determined and the onset temperature was found to exceed 850 °C, with a noticeable lag at lower pO 2 , diminishing or disappearing at higher pO 2 . To sustain a high re-oxidation conversion during the oxidation process, it is crucial to maintain either a high pO 2 (>0.16 bar) or a low cooling rate β. The kinetic parameters were subjected to polynomial fitting with pO 2 and β as independent variables, followed by an investigation into the correlation between these parameters and the fundamental physical processes of the reaction. Subsequently, a definitive kinetic model for the oxidation of Mn-Fe particle was established, exhibiting a strong correlation with experimental results (R 2 = 0.9993). This model accurately describes the oxidation process under diverse conditions, spanning variations in pO 2 from 0.16 bar to 0.7 bar and β from 5 K/min to 20 K/min, and establishes a foundation for monitoring and controlling the oxidation dynamics of Mn-Fe particle for fluidized-bed heat transfer in CSP.
S
SunView 深度解读
该Mn-Fe高温储热技术为阳光电源光热储能系统提供创新方向。研究的>900°C高温储热特性和氧化动力学模型,可启发ST系列储能变流器在光热电站的热电耦合优化设计。精确的反应动力学控制模型(R²=0.9993)与阳光电源智能控制技术协同,有助于提升PowerTitan等大型储能系统在光热发电场景的能量转换效率和循环稳定性,为iSolarCloud平台增加高温储热监控维护模块提供理论支撑,推动光热-光伏混合电站解决方案发展。