← 返回
基于混合HOA-CINN方法的太阳能驱动自动化干燥系统先进控制以提升谷物品质
Advanced control of solar-powered automated drying systems to enhance grain quality using a hybrid HOA-CINN approach
| 作者 | S.Malaisamy · B. Meenakshi Sundaram · A.Srinivasan |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 293 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★ 4.0 / 5.0 |
| 关键词 | HOA enhances moisture removal and grain quality retention. |
语言:
中文摘要
摘要 谷物干燥是一项关键的产后处理过程,可确保长期储存的稳定性并保持其品质。然而,传统的干燥方法通常存在能耗高、水分去除不一致等问题,亟需开发更加高效且具有适应性的干燥解决方案。本研究提出了一种新的自适应控制方法,以提升太阳能驱动的自动化谷物干燥系统的性能。所提出的自适应系统采用河马优化算法(Hippopotamus Optimization Algorithm, HOA)优化干燥参数,从而提高谷物品质;同时引入条件可逆神经网络(Conditional Invertible Neural Network, CINN)预测干燥系统的行为,实现自适应控制,以维持最佳干燥条件。本研究的主要目标是最小化水分比(MR),从而减少产后谷物损失,并保持谷物的整体品质和营养价值。所提出的方法称为HOA-CINN,在MATLAB环境中实现,并与多种现有技术进行性能对比分析。实验结果表明,该方法实现了低至10的MR值,确保了高效的水分去除并减少了产后损失。此外,其峰值能耗仅为1.113 kWh,表现出优于现有方法的能源效率。同时,色差变化值为9.38,表明谷物品质保持良好,变色程度极小。进一步的统计分析验证了所提方法的稳定性和一致性,其均值和中位数分别为1.2290和1.2134,标准差低至0.0326,凸显了该方法在维持最优干燥条件方面的可靠性。
English Abstract
Abstract Grain drying is a vital post-harvest process that ensures long-term storage stability and quality preservation. However, conventional drying methods often suffer from high energy consumption and inconsistent moisture removal, demanding the development of more efficient and adaptive drying solutions. This research offers a new adaptive control for the performance improvement of solar-powered automatic grain drying systems. The proposed adaptive system utilizes the Hippopotamus Optimization Algorithm (HOA) to optimize drying parameters and enhance grain quality and Conditional Invertible Neural Network (CINN) is used to predict the behavior of the drying system allowing adaptive control to maintain optimal drying conditions. The study’s primary aim is to minimize the moisture ratio (MR), thus reducing post-harvest grain loss and preserving the overall quality and nutritional value of the grains. The proposed method, referred to as HOA-CINN is implemented in MATLAB and compared with various existing techniques for performance analysis. The proposed method achieved a low MR of 10, ensuring efficient moisture removal and reduced post-harvest loss. It also demonstrated a low peak energy consumption of 1.113 kWh, outperforming existing methods in energy efficiency. Additionally, the color change value of 9.38 indicates superior grain quality retention with minimal discoloration. Furthermore, statistical analysis confirms the stability and consistency of the proposed techniques, with a mean and median of 1.2290 and 1.2134, in that order and a low standard deviation of 0.0326, highlighting its reliability in maintaining optimal drying conditions.
S
SunView 深度解读
该太阳能自适应控制技术对阳光电源ST系列储能系统和SG光伏逆变器具有重要借鉴价值。HOA优化算法可应用于储能系统的充放电策略优化,CINN预测模型可增强iSolarCloud平台的负载预测能力。研究中的能效管理思路(峰值能耗1.113kWh)与阳光电源MPPT优化技术协同,可提升光储一体化系统在农业应用场景的能量利用效率,为拓展分布式光储在粮食加工等工业领域应用提供算法创新方向。