← 返回
光伏发电技术 可靠性分析 ★ 5.0

钠诱导的掺钨氧化铟薄膜及异质结太阳能电池在湿热环境中的退化

Sodium-induced degradation of tungsten doped indium oxide film and HJT solar cells in damp-heat environment

语言:

中文摘要

摘要 硅异质结(HJT)太阳能电池的可靠性是延长其光伏系统寿命的关键。钠被认为是使用钠钙玻璃封装的光伏组件性能衰减的主要因素之一。本研究探讨了在湿热条件(DH,85 °C和85%相对湿度)下,未封装HJT太阳能电池因NaHCO₃引起的退化行为。Na⁺和H₂O在IWO薄膜晶界处的化学吸附可促进氧化铟向氢氧化铟的转化,导致载流子迁移率下降以及晶界势垒升高。此外,Na⁺穿过IWO薄膜扩散至HJT太阳能电池的钝化层,会恶化nc-Si:H的钝化效果,从而引起HJT太阳能电池效率的降低。研究发现,具有大晶粒尺寸的IWO薄膜能够有效抵抗Na⁺老化。当IWO的晶粒尺寸从36.0 nm增加到56.1 nm时,由Na⁺引起的HJT太阳能电池效率退化将从71.4%相对值降低至36.6%相对值。该研究为理解HJT太阳能电池的退化机制提供了重要见解,对于优化器件性能并提升HJT组件的长期可靠性具有重要意义。

English Abstract

Abstract The reliability of silicon heterojunction (HJT) solar cells is the key to extending the lifetime of their photovoltaic systems. Sodium is considered to be one of the main factors in the attenuation of PV modules encapsulated with soda-lime glass. This work investigated the NaHCO 3 -induced degradation of unencapsulated HJT solar cells at damp-heat conditions (DH, 85 °C and 85 % relative humidity). Chemisorption of Na + and H 2 O at the grain boundaries of IWO films can promote the transformation of indium oxide into indium hydroxide, causing the degradation of carrier mobility and the increase in grain boundary barrier. Furthermore, the diffusion of Na + through the IWO film into the passivation layer of the HJT solar cell deteriorates the passivation effect of nc-Si:H, resulting in a decrease in the efficiency of the HJT solar cell. It is found that IWO films with the large-size grains can effectively withstand Na + aging. When the grain size of IWO increases from 36.0 nm to 56.1 nm, the degradation of HJT solar cell efficiency due to Na + will be reduced from 71.4 % rel to 36.6 % rel . This study provides important insights into the degradation mechanisms of HJT solar cell, which is critical for optimizing performance and enhancing the long-term reliability of HJT modules.
S

SunView 深度解读

该研究揭示HJT电池在湿热环境下钠离子诱导的IWO薄膜降解机制,对阳光电源SG系列光伏逆变器系统可靠性设计具有重要参考价值。研究发现大晶粒IWO薄膜可显著降低效率衰减(从71.4%降至36.6%),为iSolarCloud平台的组件衰减预测模型提供理论依据。建议在逆变器MPPT算法中加入组件湿热老化补偿策略,并在电站选址评估中强化钠离子污染风险分析,提升光伏系统25年全生命周期发电量保障能力。