← 返回
光伏发电技术 光伏逆变器 储能系统 ★ 5.0

一种基于传感器的新型预故障检测框架在能源系统中的应用:以光伏逆变器为例

A novel sensor-driven framework for preemptive failure detection in energy systems: Application to photovoltaic inverters

作者 Mohammad Badfar · Ratna Babu Chinnam · Shijia Zhaob · Feng Qiub · Murat Yildirim
期刊 Solar Energy
出版日期 2025年1月
卷/期 第 299 卷
技术分类 光伏发电技术
技术标签 光伏逆变器 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Novel framework detects PV inverter failures preemptively using sensor data.
语言:

中文摘要

摘要 在能源系统中,有效的资产监测对于降低平准化度电成本至关重要,因为故障可能导致显著的能量损失和昂贵的维修费用。本文提出了一种模块化的工业级框架,用于在能源系统中实现故障的预先检测。该框架由三个主要模块组成:自主传感器数据的预处理、外部影响因素的抑制以及故障风险的标记。第一个模块采用数据清洗、转换、校准和特征工程等技术,对原始传感器数据进行精细化处理,以供后续分析使用。第二个模块旨在减少环境和运行等外部变量对传感器信号的影响。第三个模块利用先进的集成方法来检测指示潜在故障的异常情况。本研究强调了预处理在提升数据质量方面的关键作用,并通过一个涉及光伏(PV)逆变器的实际案例研究验证了该框架的有效性。结果表明,该框架能够准确识别存在故障风险的逆变器,从而实现及时维护并减少停机时间。

English Abstract

Abstract Effective asset monitoring in energy systems is essential for minimizing the levelized cost of energy , as failures can lead to significant energy losses and expensive repairs. This paper introduces a modular industrial framework for detecting failures preemptively in energy systems. The framework consists of three main modules: preprocessing of autonomous sensor data, mitigating external influences, and flagging failure risks. The first module applies data cleaning, transformation, calibration, and feature engineering techniques to refine raw sensor data for subsequent analysis. The second module minimizes the influence of external variables such as environmental and operational variables on the sensor signals. The third module utilizes advanced ensemble methods to detect anomalies indicative of potential failures. This study underscores the critical role of preprocessing in enhancing data quality and validates the framework’s effectiveness through a real-world case study involving photovoltaic (PV) inverters. The results demonstrate the framework’s ability to accurately identify inverters at risk of failure, enabling timely maintenance and reducing downtime.
S

SunView 深度解读

该传感器驱动的预防性故障检测框架对阳光电源SG系列光伏逆变器及ST系列储能变流器具有重要应用价值。其三模块架构(数据预处理、外部影响消除、风险标记)可直接集成至iSolarCloud平台,增强预测性运维能力。通过消除环境变量干扰并应用集成学习算法,能提前识别逆变器故障风险,降低LCOE并减少停机损失。该方法论可扩展至PowerTitan储能系统及充电桩产品线,提升全产品矩阵的智能运维水平,强化阳光电源在设备健康管理领域的技术领先地位。