← 返回
太阳能-风能热储能混合发电系统的可行性分析
Feasibility analysis of a solar-wind thermal storage hybrid power generation system
| 作者 | Jingrui Liu · Yimin Xuana · David Smeulders |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 300 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A solar-wind thermal storage hybrid power generation system (SWT-SHPG) is proposed. |
语言:
中文摘要
摘要 全球能源转型正在推动太阳能和风能技术的进步。太阳能与风能在时空上的互补性使其联合利用成为提升可再生能源系统稳定性和效率的关键。本研究提出一种太阳能-风能热储能混合发电系统(SWT-SHPG),通过多能协同供能、热化学储热及一体化发电设计,实现高效稳定的运行。该系统采用高密度可逆钙基材料,在650–800 °C的工作温度下实现长期低损耗的热储能,储能密度达1554 kJ/kg。同时,引入动态分配算法优化太阳能与风能的互补性,以满足储能与发电的均衡需求,实现了65%的热循环效率和71.7%的24小时动态负荷响应率。技术经济性分析表明,该系统的平准化度电成本(0.047 €/kWh)较锂离子电池储能发电系统(0.077 €/kWh)更具竞争力,为可再生能源的高效利用以及降低风电和光伏弃电比例提供了新的解决方案。
English Abstract
Abstract The global energy transformation is driving advancements in solar and wind energy technologies. The spatiotemporal complementarity of solar and wind energy makes their integration essential for enhancing the stability and efficiency of renewable energy systems. This study introduces a Solar-Wind Thermal Storage Hybrid Power Generation system (SWT-SHPG), designed to facilitate efficient and stable operation through multi-energy supply, thermochemical heat storage, and integrated power generation. The system uses high-density reversible calcium-based materials to achieve long-term low-loss heat storage at an operating temperature of 650–800 °C, with an energy density of 1554 kJ/kg. At the same time, a dynamic allocation algorithm optimizes solar-wind complementarity to meet balanced storage and generation needs, achieving a thermal cycle efficiency of 65 % and a 24-hour dynamic load response rate of 71.7 %. Technical and economic analyses indicate that the levelized cost of electricity for this system (0.047 €/kWh) is more competitive than lithium battery power system (0.077 €/kWh). It offers a new solution for the utilization of renewable energy and mitigation of the proportion of wind and solar power curtailment.
S
SunView 深度解读
该光-风-热储混合系统对阳光电源ST系列储能变流器和PowerTitan系统具有重要参考价值。研究中的动态分配算法可优化我司GFM/GFL控制策略,提升多能互补场景下的功率调度效率。650-800°C热化学储能与我司电化学储能形成互补,可拓展长时储能解决方案。71.7%的24小时动态负荷响应率验证了多能协同的技术可行性,为iSolarCloud平台集成光风储一体化调度提供算法支撑,助力降低弃风弃光率,增强电网稳定性。