← 返回
用于太阳能热光伏应用的基于超材料的宽带吸收器与选择性发射器设计
Design of a metamaterial-based broadband absorber and selective emitter for solar thermophotovoltaic applications
语言:
中文摘要
摘要 本文研究了一种由宽带吸收器、选择性发射器和低带隙光伏(PV)电池组成的太阳能热光伏(STPV)系统。采用有限元方法(FEM)对吸收器和发射器的光谱吸收与发射特性进行仿真。所提出的基于钽(Ta)、镍(Ni)和二氧化硅(SiO₂)的超材料(MTM)吸收器在250 nm至1500 nm波长范围内表现出超过90%的吸收率,覆盖了紫外、可见光和近红外(NIR)区域,并在可见光谱范围内的吸收率超过99%。此外,在AM1.5太阳光谱下,其吸收效率达到97.31%,在1600 K温度下的热发射效率为93.81%。设计了一种由Ta和SiO₂构成的MTM选择性发射器,用于为InGaAsSb、GaSb和InAs光伏电池重塑热辐射光谱。在1600 K时,InGaAsSb、GaSb和InAs电池的输出功率分别达到0.67、1.54和1.96 W/cm²;对于InAs/InGaAsSb、InGaAsSb/GaSb和InAs/InGaAsSb/GaSb叠层电池,输出功率分别提升至2.14、2.62和3.11 W/cm²。当吸收器-发射器结构构成STPV中间结构时,系统在1600 K温度和聚光比(C)为5000的条件下,对InGaAsSb、GaSb和InAs电池的转换效率分别为18.80%、14.80%和6.48%。此外,在1400 K且C = 4500条件下,InAs/InGaAsSb电池的效率超过20%;在1600 K且C = 1920条件下,InGaAsSb/GaSb电池的效率超过20%;在1400 K且C = 1740条件下,InAs/InGaAsSb/GaSb电池的效率也超过20%。这些结果突显了所提出系统的高效率与良好适应性,为未来进一步提升STPV系统性能提供了理论基础和技术依据。
English Abstract
Abstract This paper investigates a solar thermophotovoltaic (STPV) system composed of a broadband absorber, a selective emitter, and a low-bandgap photovoltaic (PV) cell. The finite element method (FEM) is used to simulate the spectral absorption and emission properties of both the absorber and the emitter. The proposed metamaterial (MTM) absorber, based on tantalum (Ta), nickel (Ni), and silicon dioxide (SiO 2 ), exhibits an absorption rate exceeding 90 % in the 250 nm – 1500 nm range, covering the UV, visible, and near-infrared (NIR) regions, and surpasses 99 % in the visible spectrum. Additionally, it achieves an absorption efficiency of 97.31 % under the AM1.5 spectrum and a thermal emission efficiency of 93.81 % at 1600 K. An MTM selective emitter, composed of Ta and SiO 2 , is designed to reshape the thermal spectrum for InGaAsSb, GaSb, and InAs PV cells. The output power reaches 0.67, 1.54, and 1.96 W/cm 2 for InGaAsSb, GaSb, and InAs cells, increasing to 2.14, 2.62, and 3.11 W/cm 2 for InAs/InGaAsSb, InGaAsSb/GaSb, and InAs/InGaAsSb/GaSb tandem cells at 1600 K. With the absorber-emitter configuration forming the STPV intermediate structure, the system achieves 18.80 %, 14.80 %, and 6.48 % efficiency for InGaAsSb, GaSb, and InAs cells at 1600 K and a concentration (C) of 5000. Moreover, efficiencies exceeding 20 % are attained from 1400 K with C = 4500 for InAs/InGaAsSb cells, from 1600 K with C = 1920 for InGaAsSb/GaSb cells, and from 1400 K with C = 1740 for InAs/InGaAsSb/GaSb cells. These findings highlight the efficiency and adaptability of the proposed system, providing a basis for further STPV performance enhancements.
S
SunView 深度解读
该超材料太阳能热光伏技术对阳光电源光伏系统具有前瞻性参考价值。研究中的宽带吸收器在AM1.5光谱下达97.31%吸收效率,为SG系列逆变器的MPPT算法优化提供新思路,特别是在高温高倍聚光场景下的能量转换。选择性发射器与低带隙电池的光谱匹配设计,可启发PowerTitan储能系统的热管理优化。有限元仿真方法可应用于功率器件SiC/IGBT的热-电耦合分析,提升三电平拓扑的可靠性。该STPV系统在1600K下实现超20%效率,为iSolarCloud平台的发电预测模型提供极端工况数据支撑。