← 返回
一种用于短期光伏发电功率预测的三阶段混合模型
A three-stage hybrid model for short-term photovoltaic power prediction
| 作者 | Xiuying Yan · Yutong Caob |
| 期刊 | Solar Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 301 卷 |
| 技术分类 | 光伏发电技术 |
| 技术标签 | 储能系统 多电平 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A three-stage hybrid model for short-term photovoltaic power prediction. |
语言:
中文摘要
准确预测光伏发电功率对于可再生能源的调度至关重要。为在气象条件波动的情况下提高预测精度,本文提出了一种用于短期光伏发电功率预测的三阶段混合模型,该模型融合了相似日优化、多级信号处理和混合预测方法。首先,将历史数据划分为多个时间段,并采用基于主成分分析-牛顿-拉夫逊优化器-K-means++(PCA-NRBO-K-means++)的聚类算法识别各时间段内不同的天气类型;在同一天气类型中选取与目标日相似的时间段,并重构相似日数据集。其次,通过变分模态分解-模糊熵(VMD-FE)与自适应噪声完备集合经验模态分解-模糊熵(CEEMDAN-FE)相结合的方法,将相似日的光伏功率分解为高频、低频、趋势项和残差项。最后,针对不同重构序列构建混合预测模型,经过独立预测与融合后,引入误差补偿机制对结果进行优化。基于中国宁夏某光伏电站实际数据的实验结果表明,与基准模型相比,所提模型的平均均方根误差(RMSE)降低了72.4%(从1.2925 MW降至0.3572 MW),平均绝对误差(MAE)降低了73.3%(从1.0472 MW降至0.2791 MW)。该模型在复杂气象条件下也表现出良好的性能:在阴天和雨天条件下,RMSE分别降低了71.0%和65.7%,MAE分别降低了72.7%和66.1%。结果表明,该模型在多种气象条件下均具有较强的适应能力。
English Abstract
Abstract Accurate prediction of Photovoltaic (PV) power generation is critical for renewable energy dispatch. To improve prediction accuracy under fluctuating meteorological conditions, this paper proposes a three-stage hybrid model for short-term PV power prediction, integrating similar day optimization, multi-level signal processing and hybrid prediction. Firstly, historical data are segmented into time periods. The Principal Component Analysis-Newton-Raphson-Based Optimizer-K-means++ (PCA-NRBO-K-means++) clustering algorithm is used to distinguish different weather categories within each period. Similar time periods to the target day are selected within the same weather category, and a similar day dataset is reconstructed. Secondly, through the combined method of Variational Mode Decomposition-Fuzzy Entropy (VMD-FE) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Fuzzy Entropy (CEEMDAN-FE), the similar day PV power is decomposed into high-frequency, low-frequency, trend and residual terms. Finally, a hybrid model is constructed for different reconstructed sequences. After separate prediction and fusion, the result is optimized by introducing error compensation. Experiments based on data from a PV power plant in Ningxia, China, demonstrate that the proposed model reduces the average root mean square error (RMSE) by 72.4 % (from 1.2925 MW to 0.3572 MW) and the average absolute error (MAE) by 73.3 % (from 1.0472 MW to 0.2791 MW), compared to the baseline model. The model also performs well under complex weather conditions. Under overcast and rainy conditions, RMSE is decreased by 71.0 % and 65.7 %, while MAE is decreased by 72.7 % and 66.1 %. The results indicate that the model maintains high adaptability under diverse meteorological conditions.
S
SunView 深度解读
该三阶段混合预测模型对阳光电源iSolarCloud智慧运维平台及ST系列储能变流器具有重要应用价值。通过PCA-NRBO-K-means++聚类算法实现相似日优选,结合VMD-FE和CEEMDAN-FE多层信号分解,可将光伏功率预测RMSE降低72.4%,显著提升SG系列逆变器与PowerTitan储能系统的协同调度精度。该模型在阴雨等复杂气象条件下仍保持高适应性,可优化GFM/GFL控制策略的前瞻性决策,增强虚拟同步发电机VSG的频率支撑能力,为源网荷储一体化调度提供高精度功率预测基础,助力新能源电站智能化运维水平提升。