← 返回
储能系统技术 储能系统 ★ 4.0

先进亚90纳米节点工艺中高压CMOS器件的实现与研究

Implementation and investigation of high voltage CMOS device in advanced Sub-90 nm node processes

作者 Xin Huang · Yintong Zhang · Zhaozhao Xu · Ziquan Fang · Donghua Liu · Wensheng Qian
期刊 Solid-State Electronics
出版日期 2025年1月
卷/期 第 228 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★ 4.0 / 5.0
关键词 MOSFET器件 短沟道效应 热载流子注入 阈值电压滚降 器件缩放
语言:

中文摘要

摘要 金属氧化物半导体场效应晶体管(MOSFET)器件的持续微缩加剧了短沟道效应(SCEs),例如热载流子注入(HCI)和阈值电压滚降,从而损害了器件的电学性能。尽管轻掺杂漏(LDD)工艺在现代CMOS制造中被广泛采用,但传统方法在先进工艺节点下难以维持良好的性能表现。本研究提出了一种新颖的高能量LDD技术,能够在不引入额外制造复杂性的前提下克服上述限制。通过严格的TCAD仿真验证,所提出的工艺展现出增强的器件稳定性以及改善的电学特性,包括更低的击穿电压波动、更优的阈值电压控制能力,以及更高的开关电流比。与传统的非自对准(NSA)和自对准(SA)LDD工艺进行对比,该技术为下一代半导体器件的尺寸微缩提供了一条可行的技术路径。

English Abstract

Abstract The continuous scaling of MOSFET devices exacerbates short-channel effects (SCEs), such as hot-carrier injection (HCI) and threshold voltage roll-off, thereby compromising electrical performance. While lightly doped drain (LDD) processes are widely adopted in modern CMOS fabrication, conventional methods struggle to maintain performance at advanced technology nodes. This work proposes a novel high-energy LDD technology that overcomes these limitations without introducing additional fabrication complexity. Through rigorous TCAD simulations, the proposed process demonstrates enhanced device stability and improved electrical characteristics , including lower breakdown voltage variation, better threshold voltage control, and improved on/off current ratios. Benchmarked against conventional non-self-aligned (NSA) and self-aligned (SA) LDD processes, this technology offers a viable pathway for next-generation semiconductor scaling.
S

SunView 深度解读

该高压CMOS器件技术对阳光电源功率半导体应用具有重要参考价值。先进的LDD工艺可提升SiC/GaN驱动芯片的耐压特性和开关性能,直接优化ST系列PCS和SG系列逆变器中的功率器件可靠性。改进的短沟道效应控制技术可降低三电平拓扑中IGBT驱动电路的热载流子注入风险,提升1500V高压系统长期稳定性。该工艺对PowerTitan储能系统的高压功率模块设计及充电桩快充芯片的击穿电压控制具有借鉴意义,可支撑下一代高功率密度产品开发。