← 返回
盐穴压缩空气储能系统中动态湿环境对其性能的影响:一种热-湿-流体动力学模拟研究
Effect of the dynamic humid environment in salt caverns on their performance of compressed air energy storage: A modeling study of thermo-moisture-fluid dynamics
| 作者 | Zhen Zeng · Hongling Ma · Chunhe Yang · Youqiang Liao · Xuan Wang · Rui Cai · Jiangyu Fang |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Thermo-moisture state in compressed air energy storage salt caverns was modeled. |
语言:
中文摘要
摘要 盐穴压缩空气储能(CAES)系统的性能受洞穴内空气状态的影响。学者们长期以来关注CAES运行过程中空气温度的波动,然而很少有人注意到同时发生的湿度变化。本研究提出了一种热-湿-流体动力学模型(TMFD模型),用于模拟CAES盐穴中的动态湿环境,以评估其对空气状态及系统储能性能的影响。该模型不仅考虑了热与湿的耦合作用以及空气的注入和抽出过程,还包含了水相变过程,如凝结、蒸发、吸湿和潮解。模型应用于容积为140,000 m³的Huntorf电站NK1号盐穴。模拟结果与实测温度数据吻合良好,并揭示了湿度与温度之间的耦合效应。在充气阶段,温度升高而相对湿度(RH)降低,促使底部卤水发生蒸发;相反,在放电阶段,温度迅速下降,导致水蒸气过饱和,从而触发吸湿、凝结和潮解现象。这些相变反应释放的反应热使盐穴整体温度水平提高了约0.61°C,同时缓解了空气注入和抽出过程中的温度波动。这两种效应相互作用,使得储气容量保持不变。放电过程中液化所释放的潜热略微提高了抽出空气的能量密度以及系统的往返效率。经过一个循环后,共有646.11 kg的水蒸气发生液化,主要发生在抽气末期,并滞留在盐穴内部。其长期累积将在30年内使盐穴可用体积和储能容量分别减少5.01%和6.23%。降低进气湿度可有效缓解这一问题。本研究揭示了CAES盐穴中湿热环境的周期性演变规律,为准确评估其作为储能系统组成部分的性能提供了依据。研究成果有望用于优化CAES运行策略,以最大化储能容量。
English Abstract
Abstract The performance of a salt cavern compressed air energy storage (CAES) system is affected by the state of air in the cavern. Scholars have been focusing on the fluctuation of air temperature during CAES operation. However, few noticed the simultaneous humidity fluctuations. In this work, a thermo-moisture-fluid dynamics model (TMFD model) was proposed for simulating the dynamic wet environment in CAES salt caverns to estimate its impact on the air state and the system's energy storage performance. In addition to the thermo-moisture coupling, air injection and withdrawal, the water phase transitions, including condensation, evaporation, absorption, and deliquescence, were also considered. The model was applied to the cavern NK1 of the Huntorf plant, with a volume of 140,000 m 3 . The simulation agrees quite well with the measured temperature data, and it revealed the coupling effect between the humidity and the temperature. During charging, the temperature increases while the relative humidity (RH) decreases, activating the bottom brine to evaporate. Conversely, the temperature drops rapidly in the discharging, supersaturating the water vapor, triggering absorption, condensation, and deliquescence. The reaction heat of these phase transitions raises the salt cavern temperature level by about 0.61 °C while moderating the temperature fluctuations during air injection and withdrawal. These two effects mutually result in the unchanged storage capacity. The latent heat released from the liquefaction during discharging slightly increases the energy density of the withdrawn air and the system's round-trip efficiency. After a cycle, 646.11 kg of water vapor was liquefied, mainly at the end of the withdrawal, and retained in the salt caverns. Its accumulation reduces the cavern's available volume and energy storage capacity by 5.01 % and 6.23 %, respectively, within 30 a. Reducing the inlet humidity can effectively solve this problem. This work reveals the cyclic changes in CAES salt caverns and provides a more accurate estimation of their performance as a part of an energy storage system. The findings are potentially employed to optimize the CAES operation strategies, maximizing the storage capacity.
S
SunView 深度解读
该盐穴压缩空气储能湿热耦合模型对阳光电源储能系统具有重要参考价值。研究揭示的温湿度耦合效应及相变潜热对系统效率的影响,可应用于PowerTitan等大型储能系统的热管理优化。ST系列PCS可借鉴其动态环境建模方法,改进BMS算法中的温度预测模型。研究发现的水汽累积导致容量衰减问题,为iSolarCloud平台的预测性维护功能提供新的监测维度,通过湿度控制策略可延长储能系统寿命并提升长期运行效率。