← 返回
储能系统技术 储能系统 ★ 5.0

基于可再生能源的插电式电动汽车负荷设计在负荷跟随策略下的技术经济评估与敏感性分析

Techno-economic evaluation and sensitivity analysis of renewable energy based designing of plug-in electric vehicle load considering load following strategy

作者 Mohd Bilal · Fareed Ahm · Arshad Mohamm · Mohammad Rizwan
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 377 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Designing solar wind and battery-based electric vehicle charging stations
语言:

中文摘要

摘要 本研究探讨了在诺伊达地区为插电式电动汽车(PEVs)充电而部署基于可再生能源的能源系统,系统包括太阳能光伏板、风力涡轮机和电池储能装置。本文的主要目标是确定系统各组件的最佳容量配置,以降低能源成本并减少电力中断的可能性。为实现上述目标,本研究采用了一种独特的基于元启发式的优化策略——吉萨金字塔建造算法(Giza Pyramid Construction Algorithm, GPCA)。通过将GPCA的结果与灰狼优化算法(GWO)、花粉授粉算法(FPA)、樽海鞘群算法(SSA)以及飞蛾火焰优化算法(MFO)进行比较,验证了GPCA所获解的优越性。研究中所用算法在不同的供电中断概率(LPSP)值(0%、1%、3%和5%)下各进行了50次仿真模拟。仿真结果表明,GPCA能够以高精度和强鲁棒性实现预定目标。此外,本研究还分析了电网电价变化对平准化度电成本(LCOE)的影响。研究结果表明,与其他方案相比,太阳能/风能/电池组合方案具有显著更低的平准化度电成本和更低的总净现值成本。GPCA估算的总净现值成本分别比GWO、MFO、SSA和FPA计算的结果低7.9%、14.1%、17.9%和24.5%。同样,GPCA提供的LCOE优化值为0.3697美元/kWh,分别比GWO、MFO、SSA和FPA低3.1%、7.3%、8.8%和11.5%。本研究的结果将为致力于通过多能系统方法确定PEV充电最优策略的研究人员提供有价值的参考信息,并可为其他城市制定类似策略提供借鉴。所提出的系统具备减轻对过载电网依赖的潜力,特别是在发展中的城市,同时有助于研究人员识别优化高效能源系统的最佳技术手段。

English Abstract

Abstract This work explores the deployment of renewable based energy systems considering solar panels, wind turbines and battery energy storage for the charging of Plug-in Electric Vehicles (PEVs) in the Noida region. The main concern of this article is to establish the optimal sizing of system components in order to reduce energy costs and the possibility of power outages . To accomplish these goals, this research employs a unique metaheuristic-based optimization strategy known as the Giza Pyramid Construction technique (GPCA). The superiority of the solution provided by the GPCA is proven by comparing the results obtained using Grey Wolf Optimization (GWO), Flower Pollination Algorithm (FPA), Salp Swarm Algorithm (SSA) and Moth Flame Optimization (MFO). The algorithms used in the study are simulated 50 times with various values of loss of power supply probability (LPSP) such as 0 %, 1 %, 3 %, and 5 %. The simulation results show that the GPCA achieves the desired objectives with high accuracy and resilience. The study also examined how varying grid tariffs influenced the levelized cost of energy . The findings revealed that, when compared to other options, the solar/wind/battery combination had a significantly lower levelized cost of energy and overall net present cost. The total net present cost estimated by GPCA is lower by 7.9 %, 14.1 %, 17.9 %, and 24.5 % compared to the costs calculated using GWO, MFO, SSA, and FPA, respectively. Similarly, the GPCA provides optimized value of LCOE (0.3697 $/kWh) which is 3.1 %, 7.3 %, 8.8 % and 11.5 % less than GWO, MFO, SSA and FPA respectively. The outcomes of this research will provide valuable insights for researchers aiming to determine the most effective strategy for powering PEV charging through a multi-energy system approach. This information can be beneficial for other cities seeking to establish a similar strategy. The proposed system holds the potential to reduce dependence on overloaded grids, especially in developing cities, and aid researchers in identifying the optimal technique for optimizing an efficient energy system.
S

SunView 深度解读

该研究对阳光电源光储充一体化解决方案具有重要参考价值。文章验证了光伏/风电/储能系统为电动汽车充电的经济性,与公司ST系列储能变流器、SG光伏逆变器及充电桩产品线高度契合。研究采用的多目标优化算法可为iSolarCloud平台的容量配置模块提供算法创新思路,特别是在降低LCOE和提升供电可靠性方面。负荷跟随策略与公司VSG虚拟同步机技术可协同优化,为发展中国家电网薄弱地区的微网解决方案提供技术支撑,助力PowerTitan等产品在新兴市场的推广应用。