← 返回
数据驱动的多保真度拓扑设计方法用于相变储能管翅片结构设计
Data-driven multi-fidelity topology design of fin structures for latent heat thermal energy storage
| 作者 | Ji-Wang Luo · Kentaro Yaji · Li Chen · Wen-Quan Tao |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 377 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Multi-fidelity topology design method for latent heat storage is developed. |
语言:
中文摘要
摘要 本文提出了一种数据驱动的多保真度拓扑设计(MFTD)方法,用于相变热能储存管中翅片结构的设计。高保真度模拟采用焓法精确求解实际的固-液相变过程,而低保真度拓扑优化(TO)则仅考虑达西流动下的自然对流。上述MFTD方法被集成于进化算法框架中,并引入变分自编码器以生成新的后代个体。针对不同格拉晓夫数(Gr)下加速熔化与凝固过程的翅片结构进行了设计。研究发现,当翅片体积分数较低时,由于对流作用强烈,熔化设计呈现出显著的非均质性,而凝固设计则几乎呈各向同性。随着翅片体积分数的增加,翅片首先变长,随后产生更多分支或次级分支,最终变得更为粗壮。本文验证了所提出的数据驱动MFTD方法在求解具有强多模态特性的优化问题时相较于基于梯度的直接拓扑优化方法的优越性。结果表明,与直接TO方法所得设计相比,MFTD方法在Gr = 3.3 × 10³和Gr = 3.3 × 10⁴条件下分别可使熔化时间进一步缩短至少27%和20%,而凝固过程的时间亦可进一步减少至少9%。
English Abstract
Abstract This work develops a data-driven multi-fidelity topology design (MFTD) method for designing fins in a latent heat thermal energy storage tube. The high-fidelity simulation resolves the actual solid-liquid phase change process using the enthalpy method , while the low-fidelity topology optimization (TO) simply considers the natural convection with Darcy flow . The above MFTD method is integrated into the framework of evolutional algorithm, and the variational autoencoder is introduced to generate new offspring. Fins for accelerating the melting and solidification processes at different Grashof number ( Gr ) are designed. It is found that when the fin volume fraction is low, the melt designs exhibit strong heterogeneity due to the strong convection, while the solidification designs are almost isotropic. Along with the increase of the fin volume fraction, the fins are first getting longer, then having more branches or sub-branches and finally becoming thicker. The superiority of the present data-driven MFTD method to the gradient-based direct TO method for solving optimization problems with strong multimodality has been demonstrated in this work. Results find that compared with the designs from direct TO, the MFTD melt design can further reduce the melting time by at least 27 % and 20 % at Gr = 3.3 × 10 3 and Gr = 3.3 × 10 4 respectively, and the MFTD solidification design can further shorten the solidification time by at least 9 %.
S
SunView 深度解读
该数据驱动多保真度拓扑优化技术对阳光电源储能系统具有重要应用价值。针对PowerTitan等液冷储能产品,翅片结构优化可显著提升相变材料充放热效率,融化时间缩短27%、凝固时间缩短9%,直接改善ST系列PCS的热管理性能。该方法结合变分自编码器的演化算法框架,可应用于储能柜散热结构设计优化,提升功率器件热可靠性。多保真度仿真策略降低计算成本,适合快速迭代产品热设计,为iSolarCloud平台的数字孪生热管理模块提供算法支撑,助力储能系统全生命周期热优化。