← 返回
波浪能农场中非线性动态响应的多保真度代理建模
Multi-fidelity surrogate modeling of nonlinear dynamic responses in wave energy farms
| 作者 | Charitini Stavropoulou · Eirini Katsidoniotaki · Nicolás Faedo · Malin Goteman |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 380 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | A multi-fidelity surrogate model for motion prediction within wave energy farms. |
语言:
中文摘要
摘要 在波浪能农场中,准确确定每个波浪能转换器的运动状态对于性能评估、能量产出估算以及实施有效的控制策略至关重要。主要挑战在于真实海洋环境中复杂的非线性水动力现象,使得精确预测每个转换器的运动变得困难。高保真数值模拟方法(如计算流体动力学)能够详细表征波浪农场对入射波的响应,但其计算成本高昂,难以适用于实时应用和多种工况的评估。相比之下,尽管在工业界广泛应用,基于线性势流理论的低保真模型却缺乏足够的精度,仅能提供大致的趋势性结果。实验波浪水槽测试虽能提供接近真实的高保真系统响应,但在灵活性和成本方面存在明显局限。为此,本文提出采用一种多保真度代理建模方法,作为设计与控制波浪能农场的有效解决方案。通过融合来自不同保真度的数据——包括低保真数值模拟结果和高保真实验测量数据——我们构建了一个能够在多种不规则波浪条件下预测农场内各转换器实际垂荡运动的模型。该模型能够有效修正低保真模型的运动预测结果,使其与各转换器的真实垂荡响应相一致。本模型的核心是长短期记忆机器学习方法,该方法能够捕捉并预测装置在不规则入射波作用下的时间序列动态响应。所提出的模型具有较低的计算成本,适用于波浪能农场设计阶段的实际装置响应估计,并为实时监测提供了可行性支持。
English Abstract
Abstract In wave energy farms, accurately determining the motion of each wave energy converter is essential for performance evaluation, estimating energy production, and implementing effective control strategies. The primary challenge lies in the real sea environment, where the complex nonlinear hydrodynamic phenomena make it difficult to estimate the motion of each converter precisely. High-fidelity numerical simulations, such as computational fluid dynamics, offer a detailed representation of the wave farm’s response to incoming waves. However, they are computationally intensive, making them impractical for real-time implementation and scenario evaluation. Conversely, although widely used in the industry, low-fidelity models based on linear potential flow theory lack accuracy and provide only a general solution trend. Experimental wave tank tests, while offering realistic, high-fidelity system representations, face limitations due to flexibility and costs. A multi-fidelity surrogate modeling approach presents a viable solution for designing and controlling wave energy farms. By leveraging data from various fidelities, low-fidelity numerical simulations, and high-fidelity experimental measurements, we develop a model capable of predicting the actual heave motion of each converter within a farm under diverse irregular wave conditions. This model effectively corrects the low-fidelity motion to align with each converter’s real heave response. Central to our model is the long-short-term memory machine learning method, which enables the prediction of the devices’ temporal response to incoming irregular waves. This model delivers solutions with low computational cost, making it suitable for estimating the actual device response during the design stage of a wave energy farm, facilitating real-time monitoring.
S
SunView 深度解读
该多保真度代理建模技术对阳光电源储能系统具有重要借鉴价值。波浪能转换器的非线性动态响应预测问题,与储能电站中PowerTitan系统面临的复杂工况预测高度相似。文中采用LSTM机器学习融合高低保真度数据的方法,可应用于ST系列PCS的实时功率响应预测,解决高精度CFD仿真计算成本高、线性模型精度不足的矛盾。该技术框架可优化iSolarCloud平台的预测性维护算法,通过融合历史运行数据与仿真模型,实现储能系统在多变电网工况下的低成本高精度响应预测,提升GFM/GFL控制策略的实时适应性。