← 返回
地质储氢优化的综合方法
An integrated approach for optimizing geological hydrogen storage
| 作者 | Sabber Khandoozi · Pei Li · Reza Ershadni · Zhenxue Dai · Zhien Zhang · Philip Henry Stauffer · Mohamed Mehan · David Robert Col · Mohamad Reza Soltanian |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 381 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Investigation of significant reservoir and operational parameters on GHS performance. |
语言:
中文摘要
摘要 在追求可持续能源转型和实现净零排放目标的过程中,地质氢气(H₂)储存(GHS)成为一项关键组成部分。GHS包括在低能源需求时期将可持续能源转化为H₂并注入地下储层,并在高能源需求时期将其采出。为优化GHS性能,必须针对各储存场地的特征——特别是储层非均质性和厚度——对注采速率等运行参数进行严格研究。理解储层特性与运行参数之间的相互作用,对于提高H₂采收效率并最小化产水量至关重要。通过数千次储层尺度的数值模拟,我们识别了这些变量如何影响关键性能指标:即最大化H₂采收量和最小化产水量。多变量自适应回归样条(MARS)敏感性分析表明,注采速率在决定累计H₂产量和产水量方面起着关键作用,而储层非均质性则是影响H₂采收率(产出H₂与注入H₂之比)的主要因素。响应面分析揭示,当储层具有较低的非均质程度(标准差<1.2)、厚度小于55米,并具备至少21,200千克/天的最低注入速率时(该速率可随储层尺寸和边界条件变化),可实现最优的GHS性能。这些发现凸显了为高效GHS运行设定最低注入速率阈值及特定储层属性的必要性。此外,我们还基于模拟结果提出了性能估算相关关系式,为有前景的GHS选址的筛选与部署提供了有价值的框架。
English Abstract
Abstract In the pursuit of a sustainable energy transition and the achievement of net-zero emissions goals, Geological Hydrogen (H 2 ) Storage (GHS) emerges as a critical component. GHS involves converting sustainable energy into H 2 and injecting it into underground formations during low energy demand periods, then extracting it during high energy demand periods. Optimizing GHS performance necessitates rigorous investigation into the operational parameters, such as injection and production rates, tailored to each storage site’s characteristics—particularly reservoir heterogeneity and thickness. Understanding the interaction between reservoir properties and operational parameters is essential to enhance H 2 recovery efficiency and minimize water production. Through thousands of reservoir-scale simulations, we identify how these variables influence key performance metrics: maximizing H 2 recovery and minimizing water production. Multivariate adaptive regression spline (MARS) sensitivity analysis indicates that injection and production rates play a crucial role in determining cumulative H 2 and water production, while reservoir heterogeneity is the primary factor influencing the H 2 recovery factor (ratio of produced to injected H 2 ). Response surface analysis reveals that optimal GHS performance is achieved in reservoirs characterized by low degree of heterogeneity (standard deviation < 1.2), a thickness of less than 55 m, and a minimum injection rate of 21,200 Kg/day, which can vary with reservoir size and boundary conditions. These findings highlight the necessity of establishing threshold injection rates and specific reservoir attributes for effective GHS operations. Additionally, we present performance estimation correlations derived from our simulations, providing a valuable framework for the screening and deployment of promising GHS sites.
S
SunView 深度解读
该地质储氢技术为阳光电源储能系统提供长周期能量存储方案参考。研究中的注入/提取速率优化、异质性分析方法可借鉴至ST系列PCS的充放电策略优化,特别是在电网调峰场景下。MARS敏感性分析框架可应用于PowerTitan系统的多变量协同控制,提升氢储能与电化学储能的混合调度效率。储氢-发电耦合系统需GFM控制技术支撑电网稳定性,为iSolarCloud平台拓展氢能资产管理功能提供技术方向,助力构建光伏-储氢-储电一体化解决方案。