← 返回
储能系统技术 储能系统 ★ 5.0

基于贝叶斯方法的自适应共振波浪能转换装置平准化能源成本逐次设计优化

Sequential design optimization with Bayesian approach for cost-competitive levelized cost of energy of a wave energy converter with adaptive resonance

作者 Aghamarshana Medur · Heon Yong Kang
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 382 卷
技术分类 储能系统技术
技术标签 储能系统
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Conforming to energy conversion process of a WEC sequential optimization is established for cost-competitive LCOE.
语言:

中文摘要

摘要 考虑波浪能转换过程中的能量逐级转换序列,本文针对具有自适应共振特性的波浪能转换装置,建立了一种实现具有成本竞争力的平准化能源成本(Levelized Cost Of Energy, LCOE)的逐次优化方法。由于海洋波浪的峰值频率和有效波高随海况变化,本文设计了自适应共振机制,通过质量重定位与动力输出系统(power-take-off, PTO)动力学之间的非线性相互作用,使装置的固有频率在每一海况下均能调节至捕获宽度比(Capture Width Ratio)最大的状态。该逐次优化过程包括:潜没体积优化,以最大化年际不规则波浪从第一级转换中产生的激励力相对于辐射阻尼的响应;运行参数优化,实现自适应共振,以在每年出现的不同海况下最大化机械能与电能转换效率,即提升各海况下的捕获宽度比;系统尺度确定,以在目标高频出现的海况下获得最高的捕获宽度比,从而在给定几何尺寸条件下最大化年发电量(Annual Energy Production, AEP);以及通过结构分析和发电机配置实现装置成本最小化。本文对一种千瓦级水面骑行式波浪能转换装置(Surface Riding Wave Energy Converter)实施了上述逐次优化。该装置可通过移动质量单元改变俯仰方向的固有频率,并与线性PTO动力学产生非线性相互作用,其特点包括采用全向性潜没体积、将线性PTO组件密封于管内,以及使用单根松弛状态锚泊线,从而实现成本降低。优化后的水面骑行式波浪能转换装置实现了年平均功率17.70 kW,年发电量148.8 MWh,最低平准化能源成本为0.372美元/kWh。相较于现有参考模型0.372美元/kWh的LCOE显著改善,这一成果归因于所提出的逐次优化方法,该方法整合了上述成本降低特性,在各级能量转换过程中提取最大能量,并在优化尺度比3:1下实现自适应共振,使得在年度各类海况中最高捕获宽度比达到46.44%,较同等漂浮条件下的参考模型性能提升两倍以上。优化后的水面骑行式波浪能转换装置性能通过基于粒子的完全非线性时域仿真得到了验证。

English Abstract

Abstract Considering sequence of energy conversion processes for the wave energy conversion , we establish a sequential optimization for a wave energy converter with adaptive resonance to achieve a cost-competitive Levelized Cost Of Energy . As the ocean waves vary in peak frequency and significant height, the adaptive resonance is devised to locate natural frequency at which Capture Width Ratio is maximized for each sea state using the combination of mass relocation and nonlinear interaction with power-take-off dynamics. The sequential optimization comprises submerged volume optimization to maximize the first conversion from annual irregular waves to excitation relative to radiation damping, operational parameters optimization for adaptive resonance to maximize subsequent conversion to mechanical and electrical energy in terms of Capture Width Ratios at individual sea states occurring annually, system scale determination to get the highest Capture Width Ratio occurring at a target frequent sea state so that Annual Energy Production can be maximized for the given dimensions, and minimization of device costs through structural analysis and generator configuration. We perform the sequential optimization for a Surface Riding Wave Energy Converter in a kilowatt scale, which feasibly change pitch natural frequency by relocating mass units with nonlinear interaction with a linear power-take-off dynamics, featuring cost reduction of Levelized Cost Of Energy by an omni-directional submerged volume, linear power-take-off components sealed inside a tube, and minimum singe mooring line in slack condition. The optimized Surface Riding Wave Energy Converter results in annual average power 17.70 kW, Annual Energy Production 148.8 MWh, and the minimum Levelized Cost Of Energy $0.372/kWh. Contrary to $3.59 to $4.36/kWh of available reference models, the significant improvement of Levelized Cost Of Energy is attributed to the sequential optimization that includes those cost reduction features, extract the maximum energy at individual conversion processes, and results in the adaptive resonance at the optimized scale 3:1, producing the highest Capture Width Ratio 46.44 % among the annually occurring sea states, which is over two times performance of the reference model in equivalent floating condition. The performance of the optimized Surface Riding Wave Energy Converter is validated with fully nonlinear particle-based simulation in time series.
S

SunView 深度解读

该波浪能转换器的序贯优化方法对阳光电源储能系统具有重要借鉴价值。其自适应谐振技术通过质量重定位和非线性PTO动力学实现频率跟踪,类似于ST系列PCS在多场景下的自适应控制策略。序贯优化框架可应用于PowerTitan储能系统的多目标优化:能量转换效率最大化对应PCS拓扑优化,系统规模确定对应容量配置优化,成本最小化对应LCOE降低。其贝叶斯优化方法可用于iSolarCloud平台的预测性维护算法,提升储能系统全生命周期经济性。该研究将LCOE从3.59美元降至0.372美元的成本控制思路,为阳光电源储能产品的系统级成本优化提供方法论参考。