← 返回
基于人工智能的带储热系统的聚光太阳能发电预测与优化模型
Artificial intelligence based forecasting and optimization model for concentrated solar power system with thermal energy storage
| 作者 | Eid Gul · Giorgio Baldinelli · Jinwen Wang · Pietro Bartocci · Tariq Shamim |
| 期刊 | Applied Energy |
| 出版日期 | 2025年1月 |
| 卷/期 | 第 382 卷 |
| 技术分类 | 储能系统技术 |
| 技术标签 | 储能系统 |
| 相关度评分 | ★★★★★ 5.0 / 5.0 |
| 关键词 | Power tower [concentrated solar power](https://www.sciencedirect.com/topics/engineering/concentrated-solar-power "Learn more about concentrated solar power from ScienceDirect's AI-generated Topic Pages") system. |
语言:
中文摘要
摘要:集成储热系统的塔式聚光太阳能发电系统为可靠且具有成本效益的能源生产提供了有前景的解决方案。本研究应用人工智能技术,以提高塔式系统的运行效率、可靠性及经济性能。提出了一种全面的实时数据驱动优化模型,该模型结合了基于人工智能的机器学习方法——随机森林回归器,并采用网格搜索交叉验证技术,以精确预测输出功率。此外,进行了相互关联的双参数优化,以优化关键系统参数,包括反射镜角度和传热流体流量。所提出的模型支持能量预测、性能优化和运行决策制定,以及经济性分析、天气影响分析和敏感性分析。通过净现值和均化度电成本计算评估了系统的经济可行性,而敏感性分析则揭示了系统对燃料价格、折现率和技术成本变化的适应能力。结果表明,该模型具有高度准确的预测性能,均方误差为0.0676,R²得分为0.9999,体现出模型的稳健性。此外,开展了天气影响与相关性分析,以评估系统在不同天气条件下的运行能力。同时,环境影响评估展示了将储热系统(TES)与聚光太阳能发电(CSP)系统集成所带来的可持续性优势,特别是在提升能量调度能力和减少排放方面的表现。总体而言,集成储热系统显著增强了系统的调度能力,尤其是在不同天气情景下表现出更强的适应性。
English Abstract
Abstract Power tower concentrated solar power systems integrated with thermal energy storage systems offer promising solutions for reliable and cost-effective energy production. This research applies Artificial Intelligence techniques to enhance the operational efficiency, reliability, and economic performance of a power tower system. A comprehensive real-time data-driven optimization model was developed incorporating an AI-based machine learning technique - Random Forest Regressor combined with grid search cross-validation to accurately predict output power. Furthermore, an interdependent dual-parameter optimization was conducted to optimize critical system parameters, including mirror angles and heat transfer fluid flow rates . The proposed model facilitates energy forecasting, performance optimization, and operational decision-making, as well as economic, weather impact, and sensitivity analysis. Economic feasibility was evaluated using Net Present Value and Levelized Cost of Energy calculations, while sensitivity analysis highlighted the system's resilience to variations in fuel prices, discount rates, and technology cost. The results indicate a highly accurate prediction, with a Mean Squared Error of 0.0676 and an R 2 score of 0.9999, featuring the model's robustness. Additionally, a weather impact and correlation analysis was conducted to analyze the system's operational capabilities under varying weather conditions. Moreover an environmental impact assessment illustrated the sustainability advantages of integrating thermal energy storage (TES) with the concentrated solar power (CSP) system, particularly in improving energy dispatch and reducing emissions. Overall, integrating the TES significantly enhanced dispatch capabilities, particularly under varying weather scenarios.
S
SunView 深度解读
该AI优化模型对阳光电源ST系列储能变流器与PowerTitan系统具有重要应用价值。随机森林算法的功率预测技术可集成至iSolarCloud平台,实现光热储能系统的智能调度与预测性维护。双参数优化方法可应用于储能系统的充放电策略优化,提升GFM/GFL控制算法在复杂气象条件下的响应能力。经济性评估模型为储能项目LCOE计算提供参考,增强系统在多场景下的调度韧性与碳减排效益。