← 返回
电动汽车驱动 ★ 5.0

基于自适应再分配的准时V2G调度圈:评估与增强转移V2G能力

Punctual V2G scheduling circle: Evaluate and enhance transfer V2G capability through adaptive redistribution

作者 Ke Liu · Yanli Liu · Gang Si · Xin Lu · Yan Xi
期刊 Applied Energy
出版日期 2025年1月
卷/期 第 383 卷
技术分类 电动汽车驱动
相关度评分 ★★★★★ 5.0 / 5.0
关键词 Proposed AV2GR method constructs punctual V2G scheduling and enhanced circles.
语言:

中文摘要

摘要 随着电动汽车(EV)数量的不断增长,车辆到电网(V2G)技术展现出巨大的潜力。然而,V2G站点及其连接的电网节点位置固定,而电动汽车的空间分布具有随机性。因此,在电网V2G调度过程中,除了关注V2G站点本地的V2G能力外,还需考虑在有限转移时间内的准时转移V2G能力。为此,本文提出一种基于自适应再分配(AV2GR)的方法,用于评估并增强目标站点的准时转移V2G能力,从而构建相应的准时V2G调度圈及增强型调度圈。首先,建立了一种转移V2G再分配(TV2GR)模型,用以评估在常规车辆和转移EV共同作用下的基础交通状态与转移交通状态下,调度圈内准时转移电动汽车的数量及其空间分布。随后,提出一种自适应增强(ADE)算法,以应对因转移拥堵造成的时间延迟和能力下降问题,从而最大化增强圈内的准时转移V2G能力。特别地,基础交通匹配(BTM)模型能够在可变交通条件下,有效地将区域内所有转移起点匹配至多个调度目的地。转移拥堵指数(TCI)则根据各转移EV对拥堵的贡献度或敏感性,自适应地削减那些虽可调度但会迟到的转移EV数量。最后,构建了综合考虑实际V2G能力、调度及时性以及潜力挖掘水平的定量评价指标体系,以实现全面的效能分析。在真实交通网络上的测试结果表明,所提出的带有准时V2G调度圈的AV2GR方法能够在保障调度准时性的前提下,最大化实际的准时转移V2G能力,并充分挖掘闲置电动汽车的储能潜力。值得注意的是,在计算时间不超过1分钟的情况下,所提出的ADE算法进一步使总的实际转移能力提升超过25%,平均潜力挖掘水平提高逾12%。

English Abstract

Abstract Growing electric vehicles (EVs) bring substantial vehicle-to-grid (V2G) potential. However, V2G sites and their connected grid nodes are stationary, but EV distributions are random. Therefore, in addition to the local V2G capability at the V2G sites, the punctual transfer V2G capability within the limited transfer duration is also a concern during grid V2G scheduling. To this end, this paper proposes an adaptive redistribution-based (AV2GR) method to evaluate and enhance required sites' punctual transfer V2G capabilities, thereby constructing corresponding punctual V2G scheduling and enhanced circles. Firstly, a transfer V2G redistribution (TV2GR) model is presented to evaluate the quantities and locations of punctual transfer EVs within scheduling circles under both base and transfer traffic states caused by routine vehicles and transfer EVs. Subsequently, an adaptive enhancement (ADE) algorithm is proposed to address time delays and capability reductions caused by transfer congestion, thus maximizing punctual transfer capabilities within enhanced circles. In particular, the base traffic matching (BTM) model effectively matches all transfer origins within the area to multiple scheduling destinations under variable traffic conditions. The transfer congestion index (TCI) adaptively reduces schedulable but late transfer EVs based on their contributions or sensitivities to transfer congestion. Finally, quantitative metrics considering actual V2G capability, scheduling timeliness, and potential exploitation level are constructed for comprehensive effectiveness analysis. Test results on a realistic traffic network show that the proposed AV2GR method with punctual V2G scheduling circles can maximize actual punctual transfer V2G capability while ensuring punctuality and fully exploiting the energy storage potential of idle EVs. Notably, with computation times not exceeding 1 min, the proposed ADE algorithm further enhances total actual transfer capability by up to over 25 % and increases the average potential exploitation level by over 12 %.
S

SunView 深度解读

该V2G准时调度技术对阳光电源充电桩及储能业务具有重要价值。论文提出的自适应再分配算法可与我司充电站网络深度融合:1)结合iSolarCloud平台实时交通数据,优化多站点协同调度策略;2)ST系列PCS可配合转移V2G能力评估,提升电网侧削峰填谷效率;3)拥堵指数模型可嵌入充电站智能管理系统,动态调整充电/放电时段;4)该方法25%的能力提升潜力可显著增强我司V2G解决方案的市场竞争力,为构建车网互动生态提供算法支撑。