← 返回
储能系统技术 储能系统 ★ 5.0

酸碱液流电池:能量密度、效率与稳定性之间的权衡

The acid-base flow battery: Tradeoffs between energy density, efficiency, and stability

语言:

中文摘要

摘要 可再生能源的部署不可避免地依赖于环境友好的储能系统。酸碱液流电池(ABFB)利用双极膜(BPM)(逆向)电渗析原理,将多余的电能储存在丰富且无害的材料(氯化钠和水)中。然而,由于离子通过膜的非预期交叉,该技术存在较高的能量损失。在本研究中,我们考察了膜类型以及电池中不同离子的影响,并确定了这种交叉现象及由此导致容量衰减的主要原因。我们还研究了在不同ABFB运行条件下(pH梯度、电流密度和所用离子)的离子交叉行为。主要损失源于质子因尺寸小、迁移率高而促进的扩散驱动型酸穿越双极膜过程。在较高pH梯度下运行可提高能量密度,但由于共离子交叉的驱动力增强,ABFB的稳定性受到损害。在较高电流密度下运行ABFB不会改变扩散驱动的离子交叉,但会使该过程相对于所需的电迁移而言变得相对不重要。然而,这会带来更高的欧姆损耗,从而降低伏特效率。改用二价离子(如硫酸根)可有效阻止酸通过双极膜的交叉,但会增加膜的电阻,从而降低伏特效率。

English Abstract

Abstract The deployment of renewable energy inevitably relies on environmentally friendly energy storage systems. An acid-base flow battery (ABFB) uses the principle of bipolar membrane (BPM) (reverse) electrodialysis to store excess electrical energy in abundant and benign materials (sodium chloride and water). However, this technology suffers from high energy losses due to undesired ion crossover through the membranes. In this study, we investigate the contribution of the membrane type as well as the different ions in the battery, and identify the major causes for this crossover and thus capacity losses. We also study the ion crossover under different ABFB operating conditions (pH gradient, current density, and used ions). The main losses are due to the diffusion-driven acid crossover through the BPM, facilitated by the small size and high mobility of protons. Operating at higher pH gradients leads to a higher energy density, but the ABFB stability is compromised due to the higher driving force for co-ion crossover. Running the ABFB at higher current densities does not alter the diffusion-driven crossover, but does make it relatively less important than the desired electromigration. However, this goes at the expense of higher ohmic losses and thus lower voltaic efficiency. Switching to divalent ions (such as sulfate) successfully prevents acid crossover through the BPM, but increases the membranes resistance, thus decreasing the voltaic efficiency.
S

SunView 深度解读

该酸碱液流电池研究揭示了双极膜储能系统的能量密度与效率权衡机制,对阳光电源PowerTitan液流储能系统优化具有参考价值。研究指出的离子交叉渗透损耗、pH梯度与稳定性矛盾、电流密度对欧姆损耗的影响等关键问题,可指导ST系列PCS在液流电池应用中的充放电策略优化。特别是高电流密度下降低扩散损耗占比的发现,为储能变流器的动态功率调控算法改进提供理论依据,助力提升大规模储能系统的全生命周期效率与经济性。