找到 1 条结果
多步联合概率海上风电功率预测:一种基于置信度触发聚类的缺失数据容忍模型
Multistep Joint Probabilistic Forecasting of Offshore Wind Power: A Confidence-Triggered Clustering Missing-Data Tolerant Model
Zhengganzhe Chen · Chenglong Du · Bin Zhang · Chaoyang Chen 等5人 · IEEE Transactions on Industrial Informatics · 2025年9月
准确可靠的海上风电场集群发电预测对于多能电力系统的低碳运行至关重要。在实际应用中,由于数据采集系统的各种故障问题或恶劣海洋环境中的通信中断,测量数据可能并不总是完整的,而关键数据的缺失可能会显著降低概率模型的可信预测精度。为解决这一问题,本文提出了一种基于置信触发模糊聚类分位数增强变压器(CFCQET)的新型容忍缺失数据模型。首先,开发了一种基于分位数增强变压器的多步风电概率预测方法,其中预测值通过条件置信期望进行迭代更新。然后,基于风电场的时空特征,构建了海上风电场的模糊C均值(FCM)聚类模...
解读: 从阳光电源新能源综合解决方案提供商的视角来看,这篇论文提出的海上风电集群多步概率预测技术具有重要的战略参考价值。虽然论文聚焦风电场景,但其核心方法论对阳光电源在光伏电站群、风光储一体化项目以及多能源管理系统中的功率预测能力提升具有直接借鉴意义。 该技术的核心创新在于缺失数据容忍机制和置信度触发策略...