找到 1 条结果
考虑时空特征的自适应编解码模型用于分布式光伏电站短期功率预测
Adaptive Encoder-Decoder Model Considering Spatio-Temporal Features for Short-Term Power Prediction of Distributed Photovoltaic Station
Xun Dou · Yehang Deng · Shunjiang Wang · Tianfeng Chu 等6人 · IEEE Transactions on Industry Applications · 2024年1月
考虑到运维成本和技术的影响,分布式光伏电站群内部通常缺乏足够的气象观测设备。所采集气象数据的偏差以及软硬件限制导致的光伏功率数据误差,将直接导致模型预测精度降低。为解决这一问题,本文提出一种具有自适应时空编解码结构的分布式光伏功率短期预测方法,该方法能够适应不同数据输入和不同天气条件下的预测需求,提高预测精度。首先,利用随机森林算法(RF)和皮尔逊相关系数(PCC)对特征重要性进行排序,选取关键输入数据。其次,提出一种基于长短期记忆网络(LSTM)和时空注意力机制(STA)的时空特征编解码模型,...
解读: 从阳光电源的业务视角来看,这项基于自适应时空编解码器的分布式光伏短期功率预测技术具有显著的战略应用价值。 **业务协同价值:**该技术直击分布式光伏电站运维痛点——气象观测设备不足导致的预测精度下降问题。对于阳光电源的智慧能源管理系统而言,精准的功率预测是实现光储协同优化的基础。通过LSTM与时空...