找到 1 条结果
基于上下文集成语言-图像多模态网络的少样本光伏薄膜缺陷检测
Few-Shot Photovoltaic Film Defect Detection With Contextual Ensemble Language-Image Multimodal Network
Huiyan Wang · Ruihao Peng · Yiheng Zhu · Jiachen Li 等6人 · IEEE Transactions on Industrial Informatics · 2025年5月
工业光伏薄膜缺陷的自动检测对于确保光伏组件的可靠性至关重要。主要挑战包括缺陷样本有限、类别间特征相似以及复杂背景的干扰。现有的基于深度学习的方法需要大规模数据集,且仅关注视觉数据,这限制了它们在少样本缺陷检测(FSDD)中的有效性。为应对这些挑战,我们提出了上下文集成语言 - 图像多模态网络(CELIN),该网络通过提示调优融入文本信息,提升了光伏薄膜的少样本缺陷检测能力。与依赖单一固定文本提示的传统语言 - 图像模型不同,CELIN采用位置感知上下文集成策略来整合特定位置的提示向量,使模型能够...
解读: 从阳光电源的业务视角来看,这项基于语言-图像多模态网络的光伏薄膜缺陷检测技术具有重要的战略价值。作为光伏组件可靠性保障的关键环节,该技术直接关系到我们光伏逆变器、储能系统等核心产品的上游供应链质量控制。 该技术的核心创新在于解决了工业场景中的三大痛点:小样本学习、相似缺陷区分和复杂背景干扰。传统深...