找到 1 条结果
基于隐私保护的多分布式储能系统运行的分布式状态分解凸优化
Privacy-Preserving-Based Distributed State-Decomposition Convex Optimization for Multi-DESS Operations
Yajie Jiang · Noven Lee · Yici Wang · Xiangrong Zhang 等6人 · IEEE Transactions on Industry Applications · 2025年3月
分布式凸优化策略广泛用于分布式储能系统(DESSs)之间的电压调节和电流分配。同时,基于一致性的二次控制方法被普遍采用,但在显式交换信息时存在泄露初始状态信息的风险。为解决这一问题,本文提出了一种用于直流网络电流分配的分布式状态分解凸优化(DSDCO)方法,以确保保护 DESSs 的初始状态。在 DSDCO 中,实施了一种状态分解策略,即将每个 DESS 的状态变量分解为两个具有随机初始值的子状态变量。其中一个子变量用于外部一致性控制,以保护节点的真实初始状态,而另一个子变量则管理内部动态以实现...
解读: 该隐私保护分布式优化技术对阳光电源ST系列储能系统和PowerTitan大型储能集群具有重要应用价值。在多储能单元协同运行场景中,该方法可应用于:1)ST2236/2500储能变流器的并联运行,通过状态分解凸优化实现电压调节与电流均衡,避免传统集中式控制中的敏感参数暴露;2)PowerTitan储能...