找到 1 条结果

排序:
智能化与AI应用 SiC器件 ★ 5.0

基于新型CNN集成与可解释人工智能的配电网虚假数据注入攻击检测与定位框架

False Data Injection Attack Detection and Localization Framework in Power Distribution Systems Using a Novel Ensemble of CNNs and Explainable Artificial Intelligence

Mohammad Reza Dehbozorgi · Mohammad Rastegar · Mohammadreza Fakhari Moghaddam Arani · IEEE Transactions on Industry Applications · 2025年1月

信息物理电力系统易受网络攻击,尤其是虚假数据注入攻击(FDIA)。近年来,针对配电系统状态估计(DSSE)的虚假数据注入攻击受到了研究人员的关注,此类攻击通过更改电表读数来改变状态估计(SE)。文献中常见的针对虚假数据注入攻击的防御方法是使用标记数据训练分类器作为虚假数据注入攻击检测器。然而,虚假数据注入攻击数据集的高度不平衡特性可能会限制这种方法的性能。机器学习模型的黑盒特性使其在重要应用中难以获得信任和采用。因此,我们提出了一种创新的可解释人工智能(XAI)增强的基于集成学习的检测与定位模型...

解读: 从阳光电源的业务视角来看,该论文提出的虚假数据注入攻击(FDIA)检测框架具有重要的战略意义。随着公司在分布式光伏、储能系统及综合能源解决方案领域的快速拓展,我们的产品正日益深度融入配电网的信息物理系统中,这使得网络安全防护成为保障系统可靠运行的关键要素。 该技术的核心价值在于为我们的智能逆变器和...