找到 1 条结果
基于MILP-TD3的用户侧储能系统优化运行
Optimal Operation of User-side Energy Storage Systems Based on MILP-TD3
陈景文单茜 · 中国电机工程学报 · 2025年13月 · Vol.45
深度强化学习(DRL)在用户侧储能调控中应用广泛,但智能体常难以严格满足运行约束,影响系统安全性。为此,提出一种混合整数线性规划与双延迟深度确定性策略梯度结合的MILP-TD3方法。构建以运行成本最小为目标、计及电池退化成本的实时优化模型,并将功率平衡约束嵌入马尔科夫决策过程。通过将TD3的动作价值函数转化为MILP公式,确保智能体严格执行约束。算例结果表明,该方法平均日运行成本较传统TD3降低25.34%,单次决策平均耗时0.024秒,满足实时性与安全性要求。
解读: 该MILP-TD3方法对阳光电源ST系列储能变流器和PowerTitan储能系统的智能调度具有重要应用价值。通过将约束嵌入强化学习决策过程,可直接集成到iSolarCloud云平台的能量管理系统中,提升用户侧储能的实时优化能力。该方法考虑电池退化成本的建模思路,可优化ST储能系统的全生命周期经济性,...