找到 1 条结果

排序:
储能系统技术 储能系统 可靠性分析 机器学习 ★ 4.0

基于物联网传感器的视障人士障碍物检测与警告系统

Obstacle Detection and Warning System for Visually Impaired Using IoT Sensors

Sunnia Ikram · Imran Sarwar Bajwa · Amna Ikram · Isabel de la Torre Díez 等6人 · IEEE Access · 2025年1月

视障人士的安全独立移动需要高效障碍物检测系统。本研究提出创新智能膝盖手套,集成机器学习技术实现实时障碍物检测和警报。系统配备超声波传感器、PIR传感器和蜂鸣器,Arduino Uno微控制器管理数据处理。为增强检测准确性,利用决策树DT、支持向量机SVM、K近邻KNN、随机森林RF和高斯朴素贝叶斯GNB等多种机器学习算法。提出新型投票分类器集成方法,有效结合这些分类器优势最大化性能。严格交叉验证确保不同条件下鲁棒评估。实验结果表明系统在4米范围内实现98.34%检测准确率,具有高精度、召回率和F...

解读: 该障碍物检测技术对阳光电源智能运维系统有借鉴意义。阳光iSolarCloud平台可借鉴集成多传感器和机器学习算法的思路,实现光伏电站设备异常检测和巡检机器人障碍物识别。投票分类器集成方法可应用于阳光故障诊断系统,提高检测准确性和鲁棒性。Arduino微控制器的边缘处理架构与阳光分布式智能设备理念一致...