找到 1 条结果

排序:
控制与算法 模型预测控制MPC 强化学习 ★ 5.0

基于神经网络预测器与软演员-评论家算法的电力电子变换器预测控制方法

A Predictive Control Method Based on Neural Predictor and Soft Actor–Critic for Power Converters

Chenghao Liu · Jien Ma · Xing Liu · Lin Qiu 等6人 · IEEE Transactions on Industrial Electronics · 2024年10月

本文着重于将软强化学习(RL)技术引入有限控制集模型预测控制(FCS - MPC)框架,以提升鲁棒性能。更确切地说,在神经预测器的基础上,开发了一个使用软演员 - 评论家算法训练的智能体,用于探索嵌入在MPC框架内的最优控制输入。同时,在训练过程中引入了基于李雅普诺夫函数的约束条件,并给出了相应的权重更新法则。此外,所提出的方法保证了集成了RL智能体的系统的稳定性。最后,仿真和实验结果均验证了该方法相较于现有FCS - MPC方法的优越性。

解读: 从阳光电源的核心业务视角来看,这项基于软强化学习的预测控制技术具有重要的战略价值。该方法将软演员-评论家算法与有限集模型预测控制相结合,通过神经网络预测器实现智能决策,这与我们在光伏逆变器和储能变流器中广泛应用的MPC控制策略形成了技术演进路径。 对于阳光电源的产品线,该技术的核心价值体现在三个层...