找到 1 条结果

排序:
控制与算法 模型预测控制MPC 深度学习 ★ 5.0

基于重要性加权的模型预测控制增强型模仿学习

Enhanced Imitation Learning of Model Predictive Control Through Importance Weighting

作者未知 · IEEE Transactions on Industrial Electronics · 2025年1月

在电力电子研究领域,用神经网络模型近似模型预测控制(MPC)算法作为一种实现计算成本高昂方法实时应用的有效工具,已受到广泛关注。训练机器学习模型以模仿MPC算法通常遵循传统的监督学习流程,其静态训练数据集通过均匀采样或仿真生成。使用均匀分布的数据进行训练可使模型在整个运行空间保持一致的性能,但非常小的模型可能无法在对应预期运行的区域取得令人满意的结果。相反,使用仿真数据进行训练可以得到能够精确跟踪某些轨迹的模型,但在数据代表性不足的区域无法获得足够好的性能。本文提出了一种结合这两种方法优势的方法...

解读: 从阳光电源的业务角度来看,这项基于重要性加权的模型预测控制(MPC)模仿学习技术具有重要的应用价值。该技术针对电力电子系统中MPC算法计算复杂度高、难以实时实现的痛点,通过神经网络模型近似MPC算法,并创新性地采用核密度估计对训练数据进行重要性加权,实现了模型性能的显著提升。 对于阳光电源的核心产...